Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Средние величины и показатели вариации






Вариационные ряды и их графики дают наглядное представление о том, как варьирует тот или иной количественный признак. Но они недостаточны для полной характеристики статистической совокупности. Количественные показатели, которые (логически и теоретически обоснованы) позволяют судить о качественном своеобразии варьирующих объектов и сравнивать их между собой, называются статистическими характеристиками.

В отличие от индивидуальных числовых характеристик средние величины обладают большей устойчивостью, способностью характеризовать группу однородных вариант одним (средним) значением. И хотя средние абстрагируют нас от конкретных вещей, они вполне понятны и ощутимы. Средний рост, средняя масса …(то есть, здесь уравновешиваются все индивидуальные отклонения и появляется качественное своеобразие группового объекта).

По определению Гаусса, истинной средней служит такая величина, сумма квадратов отклонений от которой обладает наименьшим значением.

, где - средняя величина, - варианта, - объем выборки, - величина, определяющая вид средней.

Средние величины могут характеризовать только однородную массу вариант (если это не так, следует сгруппировать варианты в отдельные качественно однородные группы и вычислять групповые средние).

- средняя гармоническая. В этом случае . В некоторых случаях для усреднения количественных признаков используется такой тип средней.

- средняя квадратическая. При выражении количественных признаков вариант мерами площади более точной усредненной характеристикой будет средняя квадратическая .

- средняя кубическая. Более точная средняя характеристика, в тех случаях, когда варьирующий признак выражен в объемных единицах.

.

Средняя геометрическая является более точной характеристикой при определении средних прибавок или при увеличении линейных размеров тел, прироста численности популяции за определенный промежуток времени.

.

- средняя арифметическая. Эту величину рассотрим подробнее.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал