Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Математические модели и их признаки.
Математические модели, используемые в экономике, можно подразделять на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария: модели макро-, и микроэкономические, теоретические и прикладные, оптимизационные и равновесные, статические и динамические. Макроэкономические модели описывают экономику как единое целое, связанные между собой укрупненные материальные и финансовые показатели. Макроэкономические модели описываю взаимодействие структурных и функциональных составляющих экономики, либо поведение отдельной такой составляющей в рыночной среде. Теоретические модели позволяют изучать общие свойства экономики и ее характерных элементов дедукцией выводов из формальных предпосылок. Прикладные модели дают возможность оценить параметры функционирования конкретного экономического объекта и сформулировать рекомендации для принятия практических решений. В моделировании экономики особое место занимают равновесные модели. Они описывают такие состояния экономики, когда результирующая всех сил, стремящихся вывести ее из данного состояния, равно нулю. В моделях статических описывается состояние экономического объекта в конкретный момент или период времени. Динамические модели включают взаимосвязи переменных во времени, описывают силы и взаимодействия в экономике, определяющие ход процессов в ней. Детерминированные модели предполагают жесткие функциональные связи между переменными моделями. Стохастические модели допускают наличие случайных воздействий на исследуемые показатели и используют инструментарий теории вероятностей и математической статистики для их описания. Проблема практического применения экономико-математического моделирования сложна и многообразна. Вопрос об адекватности модели описываемой экономической структуры содержит в себе все особенности и сложности аналогичного вопроса вообще о моделировании, идет ли речь о физической, математической или иной модели. Любая модель любого явления предполагает абстрагирование от многих реальных свойств объекта, его огрубление в разной степени, рассмотрение лишь основных его свойств исходя из целей моделирования. В этом смысле всякая модель плоха и легко уязвима для критики. Что же касается моделирования в экономике, то здесь реальный объект по своей сложности превосходит многие объекты физической природы. Вместе с тем проверка адекватности экономической модели с помощью единственного критерия истины – практики – затруднена, поскольку практический эксперимент связан зачастую с колоссальными затратами и поэтому не всегда возможны. Математическое моделирование экономических явлений и процессов является важным инструментом экономического анализа. Оно дает возможность получить четкое представление об исследуемом объекте, охарактеризовать и количественно описать его внутреннюю структуру и внешние связи. Модель условный образ объекта управления (исследования). Модель конструируется субъектом управления (исследования) так, чтобы отобразить характеристики объекта – свойства, взаимосвязи, структурные и функциональные параметры и т.п., существенные для цели управления (исследования). Содержание метода моделирования составляют конструирование модели на основе предварительного изучения объекта и выделения его существенных характеристик, экспериментальный или теоретический анализ модели, сопоставление результатов с данными об объекте, корректировка модели. В экономическом анализе используются главным образом математические модели, описывающие изучаемое явление или процесс с помощью уравнений, неравенств, функций и других математических средств. Различают математические модели с количественными характеристиками, записанными в виде формул; числовые модели с конкретными числовыми характеристиками; логические, записанные с помощью логических выражений, и графические, выраженные в графических образах. Модели, реализованные с помощью электронно-вычислительных машин, называют машинными, или электронными. Экономико-математическая модель должна быть адекватной действительности, отражать существенные стороны и связи изучаемого объекта. Отметим принципиальные черты, характерные для построения экономико-математической модели любого вида. Процесс моделирования можно условно подразделить на три этапа: 1) анализ теоретических закономерностей, свойственных изучаемому явлению или процессу, и эмпирических данных и о его структуре и особенностях; на основе такого анализа формируются модели; 2) определение методов, с помощью которых можно решить задачу; 3) анализ полученных результатов.
|