Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Кодирование алфавитно-цифровой информации






С помощью двоичных знаков можно кодировать и хранить в памяти ЭВМ любую информацию: числа; алфавитно-цифровую; команды. Для этого каждому символу присваивается свой двоичный код соответствующей разрядности.

В качестве примеров кодирования алфавитно-цифровых символов можно назвать следующие:

ДКОИ – двоичный код для обмена и обработки информации, используемый в качестве внутреннего кода для представления информации внутри ЭВМ;

 

ASCII – стандартный американский двоичный код обмена информацией и другие.

Каждый символ в коде ДКОИ представляется восьмиразрядным двоичным числом. Например, символ русского алфавита Ж представляется следующим двоичным кодом – 11110110.

Вопрос 16: История развития вычислительной техники. Сетевая операционная система.

ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: " Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".

Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны. В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.

Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.

В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к сниижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).

История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная америкнская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.

СОВРЕМЕННЫЕ ЭВМ - ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.

90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве ЭВМ во всем мире - " глобальной информационной среде обитания".

Сетевая операционная система — операционная система со встроенными возможностями для работы вкомпьютерных сетях. К таким возможностям можно отнести:

· поддержку сетевого оборудования

· поддержку сетевых протоколов

· поддержку протоколов маршрутизации

· поддержку фильтрации сетевого трафика

· поддержку доступа к удалённым ресурсам, таким как принтеры, диски и т. п. по сети

· поддержку сетевых протоколов авторизации

· наличие в системе сетевых служб позволяющих удалённым пользователям использовать ресурсы компьютера

Вопрос 17: Топология компьютерных сетей. Уровни топологий. Типы топологий.

Сетевая тополо́ гия — это конфигурация графа, вершинам которого соответствуют конечные узлы сети (компьютеры) и коммуникационное оборудование (маршрутизаторы), а рёбрам — физические или информационные связи между вершинами.

Сетевая топология может быть

· физической — описывает реальное расположение и связи между узлами сети.

· логической — описывает хождение сигнала в рамках физической топологии.

· информационной — описывает направление потоков информации, передаваемых по сети.

· управления обменом — это принцип передачи права на пользование сетью.

Полносвязная:

· Ячеистая

Неполносвязная:

· Шина (Bus)

· Звезда

· Кольцо

· Ячеистая

· Смешанная

Вопрос 18: Топология компьютерных сетей. Топология типа: звезда, кольцо

Сетевая тополо́ гия — это конфигурация графа, вершинам которого соответствуют конечные узлы сети (компьютеры) и коммуникационное оборудование (маршрутизаторы), а рёбрам — физические или информационные связи между вершинами.

Сетевая топология может быть

· физической — описывает реальное расположение и связи между узлами сети.

· логической — описывает хождение сигнала в рамках физической топологии.

· информационной — описывает направление потоков информации, передаваемых по сети.

· управления обменом — это принцип передачи права на пользование сетью.

 

Вопрос 19: Топология компьютерных сетей. Топология типа: шина, дерево

Сетевая тополо́ гия — это конфигурация графа, вершинам которого соответствуют конечные узлы сети (компьютеры) и коммуникационное оборудование (маршрутизаторы), а рёбрам — физические или информационные связи между вершинами.

Сетевая топология может быть

· физической — описывает реальное расположение и связи между узлами сети.

· логической — описывает хождение сигнала в рамках физической топологии.

· информационной — описывает направление потоков информации, передаваемых по сети.

· управления обменом — это принцип передачи права на пользование сетью.

 

Вопрос 20: Ethernet. Принцип работы. Преимущества витой пары по сравнению с коаксиальным кабелем. Стандарты.

Ethernet- технология семейство технологий пакетной передачи данных.

Пакет – это оформленный блок данных, передаваемый по сети пакетным режимом.

Преимущество витой пары:

· возможность принимать и передавать информацию

· низкая стоимость

· более высокая надежность сети

· большая помехоустойчивость

· возможность питания по кабелю в маломощных узлах

· гальваническая развязка трансформаторного шина

· на 1 мм слабое затухание

Стандарты:


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал