Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Механизмы с постоянным передаточным отношением






 

Простые механизмы. В механизме, состоящем из двух вращающихся звеньев (рис. 3.2, а, б), межосевое расстояние a = r2 ± r1 и с учетом формулы (3.4):

и (3.6)

(знак " +" для внешнего контакта, знак " - " для внутреннего).

Для механизмов с пересекающимися осями (рис. 3.2, в):

(3.7)

При d = d1+d2 = 900:

(3.8)

Для механизмов с перекрещивающими осями (рис. 3.2, г):

(3.9)

 

 

а) б)

 

в)

 

Рис. 3.3. Рядовые зубчатые механизмы: а) - последовательно соединенные колеса; б) - передача с паразитными колесами; в) - передача с коническими колесами

 

Если механизм состоит из зубчатых колес, то центроиды и аксоиды при параллельном расположении осей звеньев называются начальными окружностями и начальными цилиндрами.

Основное требование, предъявляемое к зубчатому механизму - постоянство передаточного отношения i12 в любой момент, несмотря на изменение положения точки соприкосновения контактирующих зубьев. Условие, обеспечивающее это требование, носит название основного закона зацепления; оно является следствием теоремы о соотношении скоростей в высшей кинематической паре и может быть сформулировано так: для сохранения постоянства передаточного отношения зубчатого механизма необходимо, чтобы нормаль к зацепляющимся профилям зубьев в точке контакта всегда проходила на линии центров через одну и ту же точку Р, называемую полюсом зацепления. Профили зубьев, удовлетворяющие этому условию, называются сопряженными.

В зубчатых механизмах величину передаточного отношения определяют через отношение чисел зубьев. Если умножить числитель и знаменатель отношения (3.4) на 2p, получат отношение длин начальных окружностей. Величина их может быть заменена произведением чисел зубьев на расстояние между одноименными профилями соседних зубьев (шаг по начальной окружности р), одинаковое для пары зацепляющихся колес:

(3.10)

Для зубчатых механизмов, составленных из конических колес, передаточное отношение определяется также по формуле (3.10).

В зубчатом зацеплении большее из двух колес называют колесом, а меньшее - шестерней. Отношение числа зубьев колеса (Zk) к числу зубьев шестерни (Zш) называют передаточным: U = Zk/Zш.

Рядовые механизмы. При необходимости получения большого передаточного отношения применяются механизмы, состоящие из нескольких пар колес, так называемые серии зубчатых колес. Серии зубчатых колес, у которых все валы колес вращаются в неподвижных подшипниках, называются рядовыми.

Определим передаточное отношение рядового механизма, состоящего из трех пар цилиндрических зубчатых колес (рис. 3.3, а). Колеса 2-3 и 4-5 жестко связаны между собой, т.е. вращаются с одинаковыми угловыми скоростями (w2 = w3; w4 = w5). Общее передаточное отношение механизма:

Запишем передаточное отношение для каждой зубчатой пары:

Перемножим правые и левые части этих уравнений:

(3.11)

Следовательно, передаточное отношение рядового зубчатого механизма равно произведению передаточных отношений отдельных зубчатых пар. Знак передаточного отношения рядового механизма при четном количестве внешних зацеплений положительный, при нечетном - отрицательный.

Для рядовых механизмов с коническими колесами знак передаточного отношения определяется по правилу стрелок (рис. 3.3, в): при одинаковом направлении стрелок, определяющих направление вращения колес, знак положительный, при противоположном - отрицательный.

Для передачи вращения между валами, далеко расположенными друг от друга, или для изменения направления вращения валов применяются механизмы, у которых имеются колеса, являющиеся ведомыми (по отношению к предыдущему) и ведущими (по отношению к предыдущему). В технике такие колеса называют паразитными. Передаточное отношение механизма с паразитными колесами (рис. 3.3, б) согласно формуле (3.11):

(3.12)

то есть равно отношению числа зубьев последнего ведомого колеса к числу зубьев первого ведущего. Значит, применение паразитных колес не влияет на величину передаточного отношения, но при изменении числа их от четного к нечетному меняется знак передаточного отношения.



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал