Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Момент равнодействующей плоской ССС относительно любого центра, лежащего в той же плоскости, равен алгебраической сумме моментов слагаемых сил относительно того же центра.
Соединим точку А с центром О и проведем ось Ох перпендикулярно отрезку ОА. Положительное направление оси зададим таким образом, чтобы знаки проекции любой силы на эту ось и ее момента относительно точки О совпадали. На основании свойства 3 момента силы, можно записать для произвольной силы Fk следующее: но, с другой стороны, удвоенная площадь Δ ОАВ может быть определена как: Следовательно,
Спроектируем обе части (2.13) на ось х и умножим их на постоянную величину ОА, получим:
Сравнивая обе части (2.17) с (2.16), приходим к выводу, что:
что и требовалось доказать. Формула (2.18) является математическим выражением теоремы Вариньона. Следует заметить, что данную теорему можно использовать не только к системе сил, но и к любой системе векторов, о чем мы убедимся в следующих разделах.
|