Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Дисперсия и среднее значение доли альтернативного признака
Среди варьирующих признаков, которые изучает статистика, встречаются признаки, которые проявляются в том, что у одних единиц совокупности эти признаки наблюдаются, у других нет. Альтернативный признак - это такой единственный признак, который может принимать единица совокупности из всех возможных вариантов. Если рассматривать продукцию по категориям (сортам), то она может быть либо только I категории (сорта), либо только II категории (сорта) — в данном контексте следует рассматривать эти признаки как два противоположных события. Признаки, которыми обладают одни единицы и не обладают другие, называются альтернативными. Количественно вариация альтернативного признака в численности всей совокупности обозначается p, а доля единиц, не обладающих этим признаком, обозначается q и принимает значения: p=1, q=0 1. Среднее значение для доли альтернативного признака 2. Дисперсия альтернативного признака Подставив в формулу дисперсии q = 1 – p, получим: Таким образом, дисперсия альтернативного признака равна произведению доли на дополняющее эту долю до единицы число. Т.к. p+q=1, то средний квадрат отклонений не может быть больше 0, 25. Среднеквадратическое отклонение доли альтернативного признака:
|