Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Коэффициент корреляции, определяемый по вышеуказанной формуле, относится к генеральной совокупности.






Частный коэффициент корреляции характеризует степень линейной зависимости между двумя величинами, обладает всеми свойствами парного, т.е. изменяется в пределах от–1 до +1. Если частный коэффициент корреляции равен ±1, то связь между двумя величинами функциональная, а равенство его нулю свидетельствует о линейной независимости этих величин.

Множественный коэффициент корреляции, характеризует степень линейной зависимости между величиной х1 и остальными переменными (х2, х3), входящими в модель, изменяется в пределах от 0 до 1.

Ординальная (порядковая) переменная помогает упорядочивать статистически исследованные объекты по степени проявления в них анализируемого свойства.

Ранговая корреляция – статистическая связь между порядковыми переменными (измерение статистической связи между двумя или несколькими ранжировками одного и того же конечного множества объектов О1 О2, …, Оп.

Ранжировка – это расположение объектов в порядке убывания степени проявления в них k– го изучаемого свойства. В этом случае x(k) называют рангом i – го объекта по k – му признаку. Раж характеризует порядковое место, которое занимает объект Оi в ряду п объектов.

К. Спирмен в 1904г предложил показатель, который служил для измерения степени тесноты связи между ранжировками

х1(k), x2(k),.., x n (k) и х1(i), x2(i),.., x n (i)

В последствии данный коэффициент был назван ранговым коэффициентом К. Спирмен:

Методы регрессионного анализа

Термин «регрессия» ввел английский психолог и антрополог Ф.Гальтон.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии Д(х), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у/х). модельной регрессией у и оценкой у регрессии. Пусть результа–тив–ный показатель у связан с аргументом х соотношением:

у=2х1, 5 +? i,

где Ei – случайная величина, имеющая нормальный закон распределения, причем M ? = 0 и d? –? 2.

Истинная функция регрессии в этом случае имеет вид:

f(х) = М(у/х) = 2х11, 5 1, 5+? i

Для наилучшего восстановления по исходным статистическим данным условного значения результативного показателя f(х) и неизвестной функции регрессии /(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Согласно методу наименьших квадратов минимизируется квадрат отклонения наблюдаемых значений результативного показателя yi(i= 1, 2,..., п) от модельных значений yi = f(хi), где хi значение вектора аргументов в i – м наблюдении:

? (yi – f(хi)2 > min,

Получаемая регрессия называется среднеквадратической.

Согласно методу наименьших модулей, минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений:

yi = f ( хi )

И получаем среднеабсолютную медианнуюрегрессию:

Регрессионный анализ – это метод статистического анализа зависимости случайной величины у от переменных хj-(j=1, 2,..., k), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения хj.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал