Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Оптимальний вибір точності ЗВ
Вибір ЗВ по його точності є одним із основних етапів розробки системи автоматизації об’єкта і в значній мірі визначає її ефективність. Вимірювання з похибкою, наприклад, 5 % можуть бути проведені з меншими витратами часу і коштів засобів, чим вимірювання з похибкою 0, 01 %. У той же час в останні роки дістали широке використання методи статичного визначення середнього випадкових похибок і автоматичного усунення систематичних похибок шляхом використання зразкових сигналів. Але введення поправок, таким чином, приводить до збільшення дисперсії в 2 рази, а інколи тестові методи можуть приводити до збільшення ВП в 20 раз і більше. Для раціонального вибору класу ЗВ, тобто похибки ЗВ Δ ЗВ, яка в першому наближенні визначатиме похибку Δ РВ результату вимірювання (РВ) на об’єкті необхідно враховувати ще і не відтворюваність РВ від досліду до досліду, яка визивається самим вимірювальним параметром об’єкта. Така не відтворюваність називається дифузністю. Наприклад, зріст людини змінюється з частотою дихання, а також в такт з биттям серця. Дифузнізсть в метрології – це постійна змінна вимірюваного параметру в залежності від деяких чинників. Тому, похибка РВ, яка отримана при вимірюванні параметру об’єкта, (позначається як Δ РВ) складається завжди як мінімум із двох складових: Δ ДФ – похибки дифузності об’єкта вимірювання та Δ ЗВ - похибки ЗВ. Ці складові, як правило, можна рахувати некорельованими, тоді . При цьому можливі три випадки. 1. За звичаєм розробник АСУ ТП прагне використовувати найбільш точні ЗВ з Δ ЗВ < < Δ ДФ. При цьому вихідний розкид даних визначається тільки дифузністю об’єкта . Добре це чи погано? Звичайно, погано. Для того щоб отримати середнє значення цього розкиду, необхідно: 1)провести велику кількість вимірювань, але і 2)більш точні прилади вимагають, як правило, більших витрат на їх придбання та обслуговування, а також витрати часу на кожне вимірювання. Якщо при тих же умовах зменшувати точність ЗВ, то до тих пір, доки Δ ЗВ < < Δ ДФ/3 похибка ЗВ не досягне третини складової дифузії, похибка Δ РВ РВ буде залишатись практично незмінною, а витрати часу на вимірювання будуть суттєво менші. Меншою є і ціна (кошти) більш грубого приладу і вартість обслуговування, його обслуговує менш кваліфікований персонал. Таким чином, ефективність досліду підвищується. Висновок: при Δ ЗВ < < Δ ДФ точність вимірювання не може бути суттєво підвищена за використання більш точних ЗВ. Єдиним шляхом підвищення точності залишається статистична обробка даних багаторазових вимірів. Підвищення ефективності по витратам коштів досліду досягається за рахунок зниження точності ЗВ. 2. При Δ ЗВ ≈ Δ ДФ похибка , тобто, похибка розкиду Δ РВ зростає тільки на 40 % у порівнянні з тим, коли Δ ЗВ ≈ Δ ДФ. При проведенні багаторазових n вимірювань і визначенні їх середнього в зменшується як вплив Δ ДФ дифузності об’єкта так і вплив ВСП ЗВ. У цьому випадку статичне опрацювання дуже ефективне. Але значно збільшувати об’єм статистичних даних теж немає сенсу, так як систематична похибка вибраного ЗВ при визначенні середнього не зменшується. 3. При Δ ЗВ > > Δ ДФ похибка результатів вимірювання вихідних даних вимірювання повністю визначається похибкою ЗВ Δ РВ =Δ ЗВ. Якщо це значення Δ РВ повністю влаштовує розробника, то не має потреби в організації багаторазових вимірювань і визначенні середнього. Якщо ж виникає питання про необхідність зниження Δ РВ в цьому випадку, то прийняття рішення про доцільність проведення багаторазових досліджень і розрахунку середнього, чи заміну ЗВ на більш точний, вимірюється шляхом спеціального дослідження. Висновок. Порівнюючи всі три випадки можна зробити такий висновок: для досягнення найбільшої ефективності вимірювання не має сенсу вибирати прилади (ЗВ) з випадковою похибкою меншою ніж третина складової похибки дифузності об’єкта (Δ ЗВ < < Δ ДФ/3), а збільшувати об’єм даних для розрахунку середнього має сенс до тих пір, доки величина не буде зрівнюватись (не досягне рівня) із значенням систематичної складової похибки ЗВ. [1, с.: 105…220; 2, c.: 5…84; 5, с.: 4…5 ] Контрольні запитання до розділу 3 1. Приведіть класифікацію похибок вимірювань. 2. Дайте визначення похибок результатів та засобів вимірювань. 3. Що таке нормоване значення похибки та його призначення? 4. Правила округлення результатів вимірювань. 5. Як визначається похибка результату одноразового непрямого вимірювання? 6. Як визначається похибка результату прямого одноразового вимірювання? 7. Як визначається похибка результатів багаторазових непрямих вимірювань? 8. Що таке систематична похибка і як вона визначається? 9.Що таке випадкова складова похибки вимірювань та її особливості? 11. Що таке інтегральний закон розподілу випадкових величин? 12. Що таке середньоквадратичне відхилення випадкової похибки? 13. В чому суть розподілу Стьюдента? 14. Як розраховується похибка ІВС (ІВК)? 15. Як розраховується похибка ЗВ? 16. Як здійснюється оптимальний вибір засобу вимірювань по точності?
|