Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основные кинематические параметры






 

Траектория. Линию, которую очерчивает материальная точка при движении в пространстве, называют траекторией.

Траектория может быть прямой и кривой, плоской и простран­ственной линией.

Уравнение траектории при плоском движении: у = f(х).

Пройденный путь. Путь измеряется вдоль траектории в направлении движения. Обозначение — S, единицы измерения — метры.

Уравнение движения точки. Уравнение, определяющее положение движущейся точки в за­висимости от времени, называется уравнением движения.

 

Положение точки в каждый момент времени можно опреде­лить по расстоянию, пройденному вдоль траектории от некоторой неподвижной точки, рассматрива­емой как начало отсчета (рис. 9.1). Такой способ задания движения называется естественным.

Таким образом, уравнение движения можно представить в виде S = f(t). Положение точки можно также определить, если известны ее координаты в зависимости от времени (рис. 9.2). Тогда в случае движения на плоскости должны быть заданы два уравнения:

В случае пространственного движе­ния добавляется и третья координата

z = fз(t)

Такой способ задания движения называют координатным.

Скорость движения. Векторная величина, характеризующая в данный момент быст­роту и направление движения по траектории, называется скоростью.

Скорость — вектор, в любой момент времени направленный по касатель­ной к траектории в сторону направления движения (рис. 9.3).

Если точка за равные проме­жутки времени проходит равные расстояния, то движение называют равномерным.

Средняя скорость на пути AS определяется как

где Δ S — пройденный путь за время Δ t; Δ t — промежуток времени.

Если точка за равные промежутки времени проходит неравные пути, то движение называют неравномерным.

В этом случае скорость — величина переменная и зависит от времени v = f(t).

При рассмотрении малых промежутков времени (Δ t → 0) сред­няя скорость становится равной истинной скорости движения в дан­ный момент. Поэтому скорость в данный момент определяют как

производную пути по времени:

За единицу скорости принимают 1 м/с. Иногда скорость измеря­ют в км/ч, 1км/ч = 0, 278м/с.

Ускорение точки. Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки.

Скорость точки при перемещении из точки М1 в точку М2 ме­няется по величине и направлению. Среднее значение ускорения за этот промежуток времени

При рассмотрении бесконечно малого промежутка времени среднее ускорение превратится в ускорение в данный мо­мент:

Обычно для удобства рассматривают две взаимно перпен­дикулярные составляющие ускорения: нормальное и касательное (рис. 9.5).

Нормальное ускорение ап характеризует изменение скорости по направлению и определяется как

где г — радиус кривизны траектории в данный момент времени.

Нормальное ускорение всегда направлено перпендикулярно ско­рости к центру дуги.

Касательное ускорение at характеризует изменение скорости по величине и всегда направлено по касательной к траектории; при ускорении его направление совпадает с направлением скорости, а при замедлении оно направлено противоположно направлению век­тора скорости.

Формула для определения касательного ускорения имеет вид:

 

 

Значение полного ускорения определяется как аt = d V/dt = v1 = S’’ (рис. 9.6).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал