![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Лекция №4. Теоретические основы вентиляцииСтр 1 из 7Следующая ⇒
1. Расчет воздуховодов приточных и вытяжных систем механической и естественной вентиляции Аэродинамический расчет воздуховодов обычно сводится к определению размеров их поперечного сечения, а также потерь давления на отдельных участках и в системе в целом. Можно определять расходы воздуха при заданных размерах воздуховодов и известном перепаде давления в системе. При аэродинамическом расчете воздуховодов систем вентиляции обычно пренебрегают сжимаемостью перемещающегося воздуха и пользуются значениями избыточных давлений, принимая за условный нуль атмосферное давление. При движении воздуха по воздуховоду в любом поперечном сечении потока различают три вида давления: статическое, динамическое и полное. Статическое давление определяет потенциальную энергию 1 м3 воздуха в рассматриваемом сечении (рст равно давлению на стенки воздуховода). Динамическое давление – это кинетическая энергия потока, отнесенная к 1 м3 воздуха, определяется по формуле:
где Полное давление равно сумме статического и динамического давлений.
Традиционно при расчете сети воздуховодов применяется термин “потери давления” (“потери энергии потока”).
Потери давления (полные) в системе вентиляции складываются из потерь на трение и потерь в местных сопротивлениях (см.: Отопление и вентиляция, ч. 2.1 “Вентиляция” под ред. В.Н. Богословского, М., 1976). Потери давления на трение определяются по формуле Дарси:
где
где
где Для определения R составлены таблицы и номограммы. Номограммы (рис. 1 и 2) построены для условий: форма сечения воздуховода круг диаметром Для расчета воздуховодов и каналов прямоугольного сечения пользуются таблицами и номограммами для круглых воздуховодов, вводя при этом эквивалентный диаметр прямоугольного воздуховода, при котором потери давления на трение в круглом В практике проектирования получили распространение три вида эквивалентных диаметров: ■ по скорости
при равенстве скоростей ■ по расходу
при равенстве расходов ■ по площади поперечного сечения при равенстве площадей сечения При расчете воздуховодов с шероховатостью стенок, отличающейся от предусмотренной в таблицах или в номограммах (К = ОД мм), дают поправку к табличному значению удельных потерь давления на трение:
где
Потери давления в местных сопротивлениях. В местах поворота воздуховода, при делении и слиянии потоков в тройниках, при изменении размеров воздуховода (расширение – в диффузоре, сужение – в конфузоре), при входе в воздуховод или в канал и выходе из него, а также в местах установки регулирующих устройств (дросселей, шиберов, диафрагм) наблюдается падение давления в потоке перемещающегося воздуха. В указанных местах происходит перестройка полей скоростей воздуха в воздуховоде и образование вихревых зон у стенок, что сопровождается потерей энергии потока. Выравнивание потока происходит на некотором расстоянии после прохождения этих мест. Условно, для удобства проведения аэродинамического расчета, потери давления в местных сопротивлениях считают сосредоточенными. Потери давления в местном сопротивлении определяются по формуле
где
Коэффициент Потери давления в местных сопротивлениях участка, z, рассчитываются по формуле
где
Общие потери давления на участке воздуховода длиной
где
|