Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Классический метод расчета переходных процессов.






Общая характеристика методов анализа переходных процессов в линейных электрических цепях.

Расчет переходных про­цессов в любой линейной электрической цепи состоит из следующих основных операций:

1) выбора положительных направлений токов в ветвях цепи;

2) определения значений токов и напряжений непосредственно до коммутации;

3) составления характеристического уравнения и нахождения его корней;

4) получения выражения для искомых токов и напряжений как функции времени.

Широко распространенными методами расчета переходных процессов являются:

1) метод, называемый в литературе классическим;

2)операторный метод;

3) метод расчета с помощью интеграла Дюамеля. Для всех этих методов перечисленные операции (этапы расчета) являются обязательными. Для всех методов первые три операции

совершают одинаково и их нужно рассматривать как общую для всех методов часть расчета. Различие между методами имеет место на четвертом, наиболее трудоемком этапе расчета.

Чаще используют классический и операторный методы, реже — метод расчета с применением интеграла Дюамеля. В дальнейшем будут даны сравнительная оценка и рекомендуемая область при­менения каждого из них.

В радиотехнике, вычислительной и импульсной технике, элект­ронике, автоматике и в технике, связанной с теорией информации, кроме этих трех методов применяют метод анализа переходных процессов, основывающийся на интеграле Фурье. Для исследования характера переходного процес­са, описываемого уравнениями высоких порядков, используют мо­делирующие установки, а также метод пространства состояний.

Классический метод расчета переходных процессов.

Классическим методом расчета переходных процессов называют метод, в котором решение дифференциального уравне­ния представляет собой сумму принужденной и свободной состав­ляющих. Определение постоянных интегрирования, входящих в вы­ражение для свободного тока (напряжения), производят путем совместного решения системы линейных алгебраических уравне­ний по известным значениям корней характеристического уравне­ния, а также по известным значениям свободной составляющей тока (напряжения) и ее производных, взятых при t=0 +.

Определение постоянных интегрирования в классическом методе. Как известно из предыдущего, любой свободный ток (на­пряжение) можно представить в виде суммы экспоненциальных слагаемых. Число членов суммы равно числу корнем характеристи­ческого уравнения.

При двух действительных неравных корнях

при трех действительных неравных корнях

Для любой схемы с помощью уравнений Кирхгофа и законов ком­мутации можно найти:

1) числовое значение искомого свободного тока при t=0+, обозначим его iсв(0+);

2) числовое значение первой, а если понадобится, то и высших производных от свободного тока, взятых при t=0+. Числовое значение первой производной от свободного тока при t=0+ обозначим iсв(0+); второй — iсв¢ (0+) и т.д.

Рассмотрим методику определения постоянных интегрирования А1, А2,..., полагая известными iсв(0 +), iсв¢ (0 +), iсв¢ ¢ (0 +) и значения корней p1, p2, ….

Если характеристическое уравнение цепи представляет собой уравнение первой степени, то iсв=Aept. Постоянную интегрирова­ния А определяют по значению свободного тока iсв(0+):

Если дано характеристическое уравнение второй степени и его корни действительны и не равны, то

(5)

Продифференцируем это уравнение по времени:

(5a)

Запишем уравнения (5) и (5а) при t = 0 (учтем, что при t = 0 ep1t = ep2t = 1). В результате получим

(6)

(6а)

В этой системе уравнений известными являются iсв(0 +), iсв¢ (0 +), p1 и p2; неизвестными — А1 и А2.

Совместное решение (6) и (6а) дает

Если корни характеристического уравнения являются комплексно-сопряженными, то в (5) сопряжены не только p1 и p2 (p1, 2 = — d ± jw), но и A1 и A2. Поэтому свободный ток

(7)

Угловая частота w0 и коэффициент затухания d известны из решения характеристического уравнения.

Определение двух неизвестных A и v производят и в этом случае по значениям iсв(0+) и iсв¢ (0+). Продифференцировав по времени уравнение (7), получим

(7а)

Запишем уравнение (7а) при t = 0 +:

Таким образом, для нахождения неизвестных A и v имеем два уравнения:

Для цепи, имеющей характеристическое уравнение третьей сте­пени, свободный ток

(8)

Найдем первую, а затем вторую производную от левой и правой частей уравнения (8):

(9)

(10)

Запишем (8)—(10) при t == 0 +:

(11)

Система уравнений (11) представляет собой систему трех ли­нейных алгебраических уравнений с тремя неизвестными: A1, A2 и A3. Все остальные входящие в нее величины [p1, p2, p3, iсв(0+), iсв¢ (0+), iсв¢ ¢ (0+)] известны.

Сначала, пока еще не накоплено опыта в решении задач, для облегчения расчета величины и ее производной (производных) при t = 0 + рекомендуется решать задачу относительно тока через L или напряжения на C и только затем, используя законы Кирхгофа, оп­ределять любую другую величину через найденную.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал