![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Электродные потенциалы и электродвижущие силы
При решении задач этого раздела см. табл. 8. Процессы превращения химической энергии в электрическую и обратно называются электрохимическими. Превращение химической энергии в электрическую происходит в гальванических элементах, превращение электрической энергии в химическую осуществляется при электролизе. Простейшая электрохимическая система состоит из двух электродов, соединенных проводниками первого и второго рода. Электроды имеют электронную проводимость (проводники первого рода) и находятся в контакте с раствором или расплавом электролита, обладающим ионной проводимостью (проводником второго рода). При погружении металла в раствор электролита происходит взаимодействие поверхностных атомов металла с полярными молекулами воды, в результате которого гидратированные ионы металла переходят в раствор. При этом электроны, в избытке остающиеся в металле, заряжают его поверхностный слой отрицательно. Возникает электростатическое притяжение между перешедшими в жидкость гидратированными катионами и поверхностью металла, образуется двойной электрический слой. По мере увеличения концентрации катионов у поверхности металла скорость их перехода в раствор уменьшается, а скорость обратного процесса – перехода катионов на отрицательно заряженную поверхность металла – увеличивается. В результате этого при определенной концентрации катионов металла (зависит от природы Ме) в системе устанавливается подвижное равновесие:
в растворе на металле где п — число электронов, принимающих участие в процессе. Двойной электрический слой, возникшийна границе металл — жидкость, характеризуется определенным скачком потенциала — электродным потенциалом. Абсолютные значения электродных потенциалов измерить невоможно. Поэтому обычно определяют относительные электродные потенциалы в определенных условиях — так называемые стандартные электродные потенциалы (j°). Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в раствор собственного иона с концентрацией (или активностью), равной 1 моль/л, измеренный по сравнению со стандартным водородным электродом, потенциал которого при 25°С условно принимается равным нулю. Располагая металлы в ряд по мере возрастанияихстандартных электродных потенциалов (j°), получаем ряд стандартных электродных потенциалов (ряд напряжений). Положение того или иного металла в ряду стандартных электродных потенциалов (ряд напряжений) характеризует его восстановительную способность, а также окислительные свойства его ионов в водных растворах при стандартных условиях. Чем меньше значение j°, тем более сильным восстановителем является данный металл в виде простого вещества, и тем меньшие окислительные способности проявляют его ионы, и наоборот. Электродные потенциалы зависят от ряда факторов (природы металла, концентрации, температуры и др.). Эта зависимость выражается уравнением Нернста:
При Т = 298 К уравнение Нернста имеет вид:
Электродные потенциалы измеряют приборами, которые называют гальваническими элементами. Окислительно-восстановительная реакция, которая характеризует работу гальванического элемента, протекает в направлении, в котором ЭДС (Е) элемента имеет положительное значение. Е = jК - jА (2) где jК – потенциал катода; Анодом является электрод, на котором протекает процесс окисления, на катоде идет процесс восстановления. Очевидно, что потенциал анода более отрицателен по сравнению с потенциалом катода. Таблица 8. Стандартные электродные потенциалы (j°) некоторых металлов
Процессы в гальванических элементах протекают самопроизвольно, следовательно, должны сопровождаться уменьшением энергии Гиббса. Действительно, DG0 = - nFЕ. Так как E > 0, то DG0 < 0. Прнмер 1. Стандартный электродный потенциал никеля больше, чем кобальта (табл. 8). Изменится ли это соотношение, если измерить потенциал никеля в растворе его ионов с концентрацией 0, 001 моль/л, а потенциал кобальта – в растворе с концентрацией 0, 1 моль/л? Решение. Электродный потенциал металла ( j ) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста (1). Значения стандартных потенциалов для никеля и кобальта соответственно равны - 0, 25 В и - 0, 277 В. Определим электродные потенциалы этих металлов при заданных концентрациях: Пример 2. Решение. Подобные задачи также решаются на основании уравнения Нернста (см. пример 1):
Пример 3. Составьте схему гальванического элемента, в котором электродами являются магниевая и цинковая пластинки, опущенные в растворы их ионов с активной концентрацией 1 моль/л. Какой металл является анодом, какой катодом? Напишите уравнение окислительно-восстановительной реакции, протекающей в этом гальваническом элементе, и вычислите его ЭДС. Решение. Схема данного гальванического элемента: А (-) Mg Mg2+ || Zn2+ Zn (+) К Вертикальная линейка обозначает поверхность раздела между металлом и раствором, а две линейки — границу раздела двух жидких фаз — пористую перегородку (или соединительную трубку, заполненную раствором электролита). Магний имеет меньший потенциал (-2, 37 В) и является анодом, на котором протекает окислительный процесс: А (-): Mg0 - 2 е = Mg2+ (1) Цинк, потенциал которого -0, 763 В., — катод, т.е. электрод, на котором протекает восстановительный процесс: К (+): Zn2+ + 2 е = Zn0 (2) Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов: Mg + Zn2+ = Mg2+ +Zn Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода. Так как концентрация ионов в растворе 1 моль/л, то ЭДС элемента равна разности стандартных потенциалов двух его электродов: ЭДС = КОНТРОЛЬНЫЕ ВОПРОСЫ 241. В два сосуда с голубым раствором медного купороса поместили в первый цинковую пластинку, а во второй - серебряную. В первом сосуде цвет раствора постепенно пропадает. 242. Увеличится, уменьшится или останется без изменения масса цинковой пластинки при взаимодействии ее с растворами: а) CuS04; б) MgS04; 243. При какой концентрации ионов Zn2+ (в моль/л) потенциал цинкового электрода будет на 0, 015 В. меньше его стандартного электродного потенциала? 244. Увеличится, уменьшится или останется без изменения масса кадмиевой пластинки при взаимодействии ее с растворами: 245. Марганцевый электрод в растворе его соли имеет потенциал — 1, 23 В. Вычислите концентрацию ионов Мn2+ (моль/л). 246. Потенциал серебряного электрода в растворе AgNO3 составил 95% от значения его стандартного электродного потенциала. Чему равна концентрация ионов Ag+ (моль/л)? 247. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС медно-кадмиевого гальванического элемента, в котором [Cd2+] = 0, 8 моль/л, а [Сu2+] = 0, 01 моль/л. 248. Составьте схемы двух гальванических элементов, в одном из которых медь была бы катодом, а в другом — анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде. 249. При какой концентрации ионов Сu2+ (моль/л) значение потенциала медного электрода становится равным стандартному потенциалу водородного электрода? 250. Какой гальванический элемент называют концентрационным? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из серебряных электродов, опущенных: первый - в 0, 01 н., а второй - в 0, 1 н. растворы AgNO3. 251. При каком условии будет работать гальванический элемент, электроды которого сделаны из одного и того же металла? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, в котором один никелевый электрод находится в 0, 001М растворе, а другой такой же электрод — в 0, 01 М растворе сульфата никеля. 252. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из свинцовой и магниевой пластин, опущенных в растворы своих солей с концентрацией [Pb2+] = [Mg2+] = 0, 01 моль/л. Изменится ли ЭДС этого элемента, если концентрацию каждого из ионов увеличить в одинаковое число раз? 253. Составьте схемы двух гальванических элементов, в одном из которых никель является катодом, а в другом — анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде. 254. Железная и серебряная пластины соединены внешним проводником и погружены в раствор серной кислоты. Составьте схему данного гальванического элемента и напишите электронные уравнения процессов, происходящих на аноде и на катоде. 255. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из пластин кадмия и магния, опущенных в растворы солей соответствующих металлов с концентрациями ионов: 256. Составьте схему гальванического элемента, состоящего из пластин цинка и железа, погруженных в растворы их солей. Напишите электронные уравнения процессов, протекающих на аноде и на катоде. Какой концентрации надо было бы взять раствор соли железа [Fe2+], чтобы ЭДС элемента стала равной нулю, если [Zn2+] = 0, 001 моль/л? 257. Составьте схему гальванического элемента, в основе которого лежит реакция, протекающая по уравнению 258. Какие химические процессы протекают на электродах при зарядке и разрядке свинцового аккумулятора? 259. Какие химические процессы протекают на электродах при зарядке и разрядке кадмий-никелевого аккумулятора? 260. Какие химические процессы протекают на электродах при зарядке и разрядке железо-никелевогоаккумулятора?
|