Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Сегментация






 

Проблема сегментации зачастую возникает при рассмотрении задачи оптического распознавания текста. Сегментация — это процесс разделения цифрового изображения на несколько сегментов. Цель сегментации заключается в упрощении и/или изменении представления изображения, чтобы его было проще и легче анализировать. Сегментация изображений обычно используется для того, чтобы выделить объекты и границы (линии, кривые, и т. д.) на изображениях. Более точно, сегментация изображений — это процесс присвоения таких меток каждому пикселю изображения, что пиксели с одинаковыми метками имеют общие визуальные характеристики.

В настоящее время существует довольно много систем сегментации и обработки текстовых изображений. Наиболее известной из них является программный продукт “FineReader” компании ABBYY. Данный продукт является универсальным инструментом при работе с текстовыми изображениями. Он позволяет выделить текст на изображении и распознать его. Также всостав ABBYY FineReader входят словари для проверки орфографии они потребуются для детальной перепроверки полученных результатов работы. Еще одно достижение разработчиков ABBYY – включение в движок поддержки распознавания фотографий. Но по-прежнему основным недостатком подобных систем является высокая стоимость.

Результатом сегментации изображения является множество сегментов, которые вместе покрывают всё изображение, или множество контуров, выделенных из изображения. Все пиксели в сегменте похожи по некоторой характеристике или вычисленному свойству, например по цвету, яркости или текстуре. Соседние сегменты значительно отличаются по этой характеристике.Существуют следующие методы сегментации:

· Выделение краёв:

Границы и края областей сильно связаны, так как часто существует сильный перепад яркости на границах областей. Поэтому методы выделения краёв используются как основа для другого метода сегментации. Недостаток – обнаруженные края часто бывают разорванными. Но чтобы выделить объект на изображении, нужны замкнутые границы области.

· Методы с использованием гистограммы:

Методы с использованием гистограммы очень эффективны, когда сравниваются с другими методами сегментации изображений, потому что они требуют только один проход по пикселям. В этом методе гистограмма вычисляется по всем пикселям изображения и её минимумы и максимумы используются, чтобы найти кластеры на изображении. Цвет или яркость могут использоваться при сравнении. Недостаток этого метода — затруднительный поиск значительных минимумов и максимумов на изображении.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал