Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Оценка погрешности дискретной модели непрерывного процесса
При разностном решении ДУ в частных производных основным источником ошибок являются погрешности от замены производных конечными разностями. Эти погрешности называются погрешностями дискретизации. Таким образом, в теории разностных схем основной является проблема наилучшего приближения к ДУ с помощью разностных соотношений, или наилучшей аппроксимации дифференциальных операторов – разностными. Погрешности дискретизации зависят от следующих факторов: – способа замены дифференциальных уравнений разностными; – от конфигурации элементов конструкции (формы рассматриваемой области); – внешних воздействий (граничных условий); – длительности рассчитываемого процесса. Определим порядок погрешности дискретизации. Этот порядок целиком определяется способом замены дифференциальных операторов в задаче – разностными, то есть порядком аппроксимации. Порядок аппроксимации показывает, каким образом снижаются погрешности с уменьшением шага сетки. Если порядок аппроксимации – первый, то погрешности пропорциональны шагу, если – второй, то – квадрату шага и так далее. Покажем как определить порядок аппроксимации на примере замены производных конечными разностями. Допустим, что мы хотим заменить первую производную в точке 0 (рисунок 2) и для этого наметим два узла сетки в точках
Далее определим значение конечной разности:
Погрешность от замены первой производной конечной разностью будет равна:
При а=0 разность будет правой, при a=h - левой (9-б и 9-а соответственно). При этом погрешности соответственно составят: - для правой разности:
- для левой разности:
В том и в другом случае погрешность пропорциональна шагу сетки, то есть имеет место первый порядок аппроксимации производной конечной разностью. Условно это можно записать в виде:
Для вторых разностей ошибка замены второй производной может быть определена аналогично. Используя разложение функции F в ряд Тейлора вблизи точки X = mh, можно показать, что здесь имеет место второй порядок аппроксимации.
|