Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Вязкость. Течение жидкости в трубах






Идеальная жидкость, т. е. жидкость без внутрен­него трения, является абстракцией. Всем реальным жидкостям и газам в большей или меньшей степени присуще внутреннее трение, называемое также вязкостью. Вязкость проявляется, в частности, в том, что возникшее в жидкости или газе движение, после прекращения действия причин, его вызвавших, постепенно прекращается. Примером может служить движение жидкости в стакане после того, как ее пе­рестают размешивать ложечкой.

Рассмотрим течение жидкости в круглой трубе. Измерения показывают, что при медленном течении скорость частиц жидкости изменяется от нуля в не­посредственной близости к стенкам трубы до макси­мума на оси трубы.

 

Рисунок 5 Поперечное сечение трубы, в ко­торой течет жидкость. Штриховые окруж­ности — условные границы между слоями, движущимися с разными скоростями; 5 — площадка на границе между слоями. На­правленная вдоль радиуса ось г перпен­дикулярна к площадке S  

 

 

Жидкость при этом оказывается как бы разделенной на тонкие цилиндрические слои, которые скользят друг относительно друга, не пере­мешиваясь (рис.5). Такое течение называется ла­минарным или слоистым (латинское слово lamina означает пластинку, полоску). Отсутствие пе­ремешивания слоев можно наблюдать, создав в стек­лянной трубке диаметра несколько сантиметров сла­бый поток воды и вводя на оси трубы через узкую трубочку окрашенную жидкость (например, анилин). Тогда по всей длине трубы возникнет тонкая окра­шенная струйка, имеющая отчетливую границу с водой. Из повседневного опыта известно, что для того, чтобы Создать и поддерживать постоянным течение жидкости в трубе, необходимо наличие между кон­цами трубы разности давлений. Поскольку при уста­новившемся течении жидкость движется без ускоре­ния, необходимость действия сил давления указывает на то, что эти силы, уравновешиваются какими-то си­лами, тормозящим движение. Этими силами являет­ся силы внутреннего трения на границе со стенкой трубы и на границах между слоями. Более быстрый слой стремится увлечь за собой более медленный слой, действуя на него с силой F1 направленной по течению. Одновременно более медленный слой стрёмится замедлить движение более быстрого слон, дей­ствуя на него с силой F2y направленном против тече­ния.

Экспериментально установлено, что модуль СИЛЫ внутреннего трения, приложенной к площадке 5, ле­жащей на границе между слоями, определяется фор­мулой

F =ŋ |av\dz| s (12)

где n— называемый вязкостью коэффициент про­порциональности, зависящим от природы и состояния (например, температуры) жидкости, dv/dz —производная, показывающая, как быстро изменяется в дан­ном месте скорость течения в направлений г, перпен­дикулярном к площадке S. В случае качения жидко­сти в трубе ось z направлена в каждой точке границы между слоями по радиус} грубы (см. pиc, 42.1), Поэтому вместо dv/dz можно написать, dv/df, Знак мо­дуля в формуле (42.1) поставлен в связи с тем, что в зависимости от выбора направления оси z и харак­тера изменения скорости производная dv/dz может быть как положительной, так и отрицательной, в то время как модуль силы является положительной ве­личиной.

Мы уже отмечали, что при ламинарном течении жидкости в круглой трубе скорость равна нулю у стенки трубы и максимальна па оси трубы. Най­дем закон изменения скорости. Выделим воображае­мый цилиндрический объем жидкости радиуса r и длины l (рис. 42.3). При стационарном течении этот объем движется без ускорения. Следовательно, сумма приложенных к нему сил равна нулю. В направлении движения на жидкость действует сила давления, мо­дуль которой равен p1Пr2; во встречном направле­нии— сила давления, модуль которой равен p2Пr2. Результирующая сил давления имеет модуль (Пr2 — площадь основания цилиндра).

Fдавл. = (р12)π r2 (13)

 

 

На боковую поверхность действует тормозящая движение сила внутреннего трения, модуль которой согласно формуле равен

Fтр= ŋ |dv\dr|·2π rl = -ŋ dv\dr ·2π rl (14)

где 2Пrl — площадь бо­ковой поверхности ци­линдра, dv/dr — зна­чение производной на расстоянии r от оси трубы. Скорость убывает с расстоянием от оси труби, поэтому производ­ная dv/dr отрицательна и ее модуль равен — dv/dr {модуль отрицательного числа равен этому числу, взя­тому с обратным знаком).

Приравняв выражения и придем к дифференциальному уравнению

12)π r2=-ŋ dv\dr ·2π rl (15)

Разделив переменные, получим уравнение

dv= - p1-p2\2ŋ l·rdr (16)

интегрирование которого дает, что

v= - p1-p2\4ŋ l·r2+C (17)

Постоянную интегрирования С нужно выбрать так, чтобы на стенке трубы (т. е. при г = R) скорость обращалась в нуль. Это условие выполняется при p1-p2\4ŋ l·R2

Скорость на оси трубы равна

v0=v(0) =p1-p2\4ŋ l·R2 (18)

Отсюда следует, что при ламинарном течения скорость изменяется с расстоянием от оси трубы но параболическому закону (рисунок 42.4а).

 

С помощью формулы можно вычисти, по­ток жидкости Q, т. е. объем жидкости, протекающей через поперечное сечение трубы и единицу времени. Разобьем сечение трубы на кольца ширины dr. Через кольцо радиуса r пройдёт в еди­ницу времени объем жидкости dQ, равный произведе­нию площади кольца 2Пrdr на скорость v(t) на рас­стоянии от оси трубы:

dQ = ʋ 0(1-r2\R2)·2π rdr (19)

Проинтег­рировав это выражение по г в пределах ОТ пули до R, получим поток Q:

ʋ 0(1-r2\R2)·2π rdr = 0.5 Sʋ 0 (20)

(S —площадь сечения трубы). Поток можно пред­ставить как произведение среднего по сечению значения скорости и на площадь. Из формулы следует, что при ламинарном течении среднее значение скорости равно половине значения скорости на оси трубы.

Q= (p1-p2)π R4\8ŋ l (21)

которая называется ф о р м у л о й П у а з е й л я. Из нее следует, что поток очень сильно зависит от радиуса трубы.

Естественно, что Q пропорционален отношению {P1 — Р2) / l т. е. перепаду давле­ния на единице длины трубы, а также обратно пропорционален вязкости жидкости n.

Формула Пуазейля использу­ется для определения вязкости жидкостей и газов. Пропуская жидкость или газ через трубку известного радиуса, измеряют перепад давления и поток Q. Затем на основании полученных данных вычисляют n.

Мы все время подчеркивали, что предполагаем те­чение медленным для того, чтобы оно имело ламинар­ный характер. Напомним, что ламинарное течение яв­ляется стационарным. Это означает, что скорость ча­стиц жидкости, проходящих через данную точку про­странства, все время одна и та же. Если увеличивать скорость течения, то при достижении определенного значения скорости характер течения резко меняется. Течение становится нестационарным — скорость ча­стиц в каждой точке пространства все время беспоря­дочно изменяется. Такое течение называется тур­булентным. При турбулентном течении происхо­дит интенсивное перемешивание жидкости. Если в турбулентный поток ввести окрашенную струйку, то уже на небольшом расстоянии от места ее введения окрашенная жидкость равномерно распределится по всему сечению потока. Это можно наблюдать в упоминавшемся выше опыте, если увеличить поток воды в стеклянной трубке.

Поскольку при турбулентном течении скорость в каждой точке все время меняется, можно говорить только о среднем по времени значении скорости, кото­рая при неизменных условиях течения оказывается постоянной в каждой точке пространства. Профиль средних скоростей для одного из сечений трубы при турбулентном течении показан на рис. 42.56. Сравне­ние с рис. 42.5 а показывает, что вблизи стенки трубы скорость изменяется гораздо сильнее, чем при лами­нарном течении; в остальной части сечения скорость изменяется меньше.

Рейнольдс установил, что характер течения оп­ределяется значением безразмерной величины

Re = pʋ l\ŋ (22)

где р — плотность жидкости (или газа), v — средняя по сечению трубы скорость потока, n - вязкость жид­кости, l — характерный для поперечного сечения по­тока размер, например сторона квадрата при квад­ратном сечении, радиус или диаметр при круглом се­чении. Величина Re называется числом Рейнольдса.

При малых значениях Re течение носит ламинар­ный характер. Начиная с некоторого значения Re, называемого критическим, течение приобретает турбулентный характер. Если в качестве характер­ного размера трубы взять ее радиус (в этом случае Re = pvr/n), то критическое значение числа Рейнольдса оказывается равным примерно 1000 (если в качестве / взять диаметр трубы, то критическое зна­чение Re будет равно 2000).

Число Рейнольдса служит критерием подобия для течения жидкостей в трубах, каналах и т. д. Напри­мер, характер течения различных жидкостей (или га­зов) в круглых трубах разных диаметров будет оди­наковым, если каждому течению соответствует одно и то же значение Re.

Re = ʋ l\ŋ (23)

В число Рейнольдса входит отношение плотности р и вязкости т). Величина называется кинематической вязкостью. Чтобы отличить ее от v, величину n называют ди­намической вязкостью. Будучи выраженным через кинематическую вязкость, число Рейнольдса имеет вид

v = ŋ \ρ (24)


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал