Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Механика жидкостей
Совокупность векторов v(t), заданных для всех точек пространства, называется полем вектора скорости. Это поле можно наглядно изобразить с помощью линий тока (. Линию тока
можно провести через любую точку пространства. Если построить все мыслимые линии тока, они просто сольются друг с другом. Поэтому для наглядного представления течения жидкости строят лишь часть линий, выбирая их так, чтобы густота линий тока была численно равна модулю скорости в данном месте. Тогда по картине линий тока можно судить не только о направлении, но и о модуле вектора v в разных точках пространства. Например, в точке А густота линий, а следовательно и модуль v, чем в точке В. Поскольку разные частицы жидкости могут проходить через данную точку пространства с разными скоростями (т. е. v = v(t )), картина линий тока, вообще говоря, все время изменяется. Если скорость в каждой точке пространства остается постоянной (V= const), то течение жидкости Называется стационарным (установившимся). При стационарном течении любая частица жидкости проходит через данную точку пространства с одной и той же скоростью v. Картина линий тока при стационарном течении остается неизменной, и линии тока в этом случае совпадают с траекториями частиц. Если через все точки небольшого замкнутого контуpa провести линии тока, образуется поверхность, которую называют трубкой тока. Вектор v касателен к поверхности трубки тока в каждой ее точке. Следовательно, частицы жидкости при своем движении не пересекают стенок трубки тока. Возьмем трубку тока, достаточно тонкую для того, чтобы во всех точках ее поперечного сечения S скорость частиц v была одна и та же (рис. 39.2). При стационарном течении трубка тока подобна стенкам жесткой трубы. Поэтому через сечение 5 пройдет за время Δ t объем жидкости, равный SvΔ t, а в единицу времени объем V=Sv (31) Жидкость, плотность которой всюду одинакова и изменяться не может, называется несжимаемой. На рис. 39.3 изображены два сечения очень тонкой трубки тока — S1 и S2. Если жидкость несжимаема, то кол – во ее между этими сечениями остается неизменным. Отсюда следует, что объемы жидкости, протекающие в единицу времени через сечения S1 и S2, должны быть одинаковыми:
Равенство справедливо для любой пары произвольно взятых сечений. Следовательно, для несжимаемой жидкости при стационарном течении произведение Sv в любом сечении данной трубки тока имеет одинаковое значение: Sv=const (32) Это утверждение носит название теоремы о неразрывности струи. Мы получили формулу для несжимаемой жидкости. Однако она применима к реальным жидкостям и даже к газам в том случае, когда их сжимаемостью можно пренебречь. Расчеты показывают, что при движении газов со скоростями, много меньшими скорости звука в этой среде, их можно с достаточной точностью считать несжимаемыми. Из соотношения вытекает, что при изменяющемся сечении трубки тока частицы несжимаемой жидкости движутся с ускорением. Если трубка тока горизонтальна, это ускорение может быть обусловлено только непостоянством давления вдоль трубки — в местах, где скорость больше, давление должно быть меньше, и наоборот. Аналитическую связь между скоростью течения и давлением мы установим в следующем параграфе.
|