Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
В) Умножение на двузначное и трехзначное число
Теоретическая основа вычислительных приемов, используемых при рассмотрении этих случаев умножения - правило умножения числа на 4 сумму, которое предварительно изучается. Рассмотрение случаев умножения на двузначное число полезно начать с устного приема, чтобы показать ход рассуждений: 14•13 =14•(10+3)= 14 • 10 + 14 • 3 = 140 + 42 = 182. Затем целесообразно усложнить задание. 67 • 45 = 67 • (40 + 5) = 67 • 40 + 67 • 5 = 2680 + 335 =3015. Устно выполнить трудно, можно предложить сделать вычисления письменно. 67 67 2680 х х + 40 5 335 2680 335 3015 В ходе этих рассуждений подводим детей к выводу, что надо найти два неполных произведения и их сложить, то есть данное число умножаем на число десятков второго множителя; затем это число умножаем на число единиц второго множителя. Полученные результаты складываем. Если устно умножать трудно, лучше записать столбиком. Умножать начинаем с единиц. Показываем ход рассуждений при этом. Х 45 + 2680 Умножаем 67 на 5, получим 335 единиц. Теперь умножим 67 на 40. Для этого умножаем 67 на 4 и полученное число умножим на 10, получаем 2680. Обращаем внимание, что 335 и 2680 - это неполные произведения. Число 3015 - полное произведение, или окончательный результат. Обращаем внимание учащихся на то, что второе неполное произведение - это результат умножения на круглые десятки, поэтому всегда в нем на месте единиц стоит 0, его обычно не пишут. Это неполное произведение указывает на количество десятков в нем, его и начинают записывать под десятками первого неполного произведения. Таким образом, рассуждения ведем так: 67 умножим на 5 единиц, получаем 335 единиц - первое неполное произведение. Теперь 67 умножим на 4 десятка, получаем 268 десятков - второе неполное произведение. Складываем. При умножении на трехзначное число следует подвести детей к выводу, что рассуждения в принципе те же, только здесь будет добавляться только третье неполное произведение, а значит, третье слагаемое - какое-то количество сотен. Третье неполное произведение начинаем записывать под сотнями первого неполного произведения. Практика показывает, что для того чтобы выработать прочные навыки безошибочных вычислений, нужно прорешать значительно количество упражнений и необходима достаточная тренировка. Кроме того, успех зависит и от того, насколько прочны знания учащихся таблицы умножения и как уверенно дети овладели навыками сложения двух-трех чисел. После того как рассмотрены общие случаи умножения на двузначное и трехзначное число, рассматриваются частные случаи умножения, а именно случаи умножения чисел с нулями в середине второго множителя, Фактически здесь учащиеся встречаются с тем же самым приемами вычислений, но с некоторыми особенностями. Например, 829 • 703. Для первого такого примера целесообразно показать детям более подробную запись: 829 х 703 + После обсуждения дети подводятся к выводу, что второе неполное произведение здесь можно убрать. Отсюда приходим к записи: Х 703 +5803 Такой подход позволит предупредить возникновение у детей ошибок в записи второго неполного произведения для аналогичных случаев. Умножение на числа, выходящие за пределы трехзначных (4-хзначные, 5-значные и др.) по существу не отличаются от умножения на трехзначное число. Поэтому, овладев навыками умножения на трехзначное число, ученики смогут овладеть умением умножать многозначные числа на любое число. И опять после рассмотрения всех случаев умножения многозначных чисел вводится умножение составных именованных чисел, выраженных в метрических мерах. Здесь умножение целесообразно выполнять одним способом: составное именованное число заменяется простым, выполняют действие над отвлеченными числами, а затем полученное простое именованное число заменяют составным. 7 м 85 см·18 = 141 м 30 см 4 ц 90 кг • 26 = 127ц 40 кг
Х 18 +785 См) При изучении всех случаев умножения прежде всего необходимо добиться понимания вычислительного приема, после чего вести работу по формированию вычислительных навыков. А для этого надо своевременно и разумно сокращать объяснение решения и переходить к кратким пояснениям. Большее значение в этом имеет тщательно подобранная система тренировочных упражнений.
|