Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Сложение и вычитание многозначных чисел






Сложение и вычитание многозначных чисел изучается на последнем году обучения в начальных классах. Поэтому перед учителем стоит зада­ча обобщить, систематизировать знания детей о действиях сложения и вычитания, расширить их и углубить.

Сложение и вычитание многозначных чисел изучается одновременно. Подготовительная работа к изучению сложения и вычитания многознач­ных чисел начинается и проводится еще при изучении нумерации, где:

1) повторяются письменные приемы сложения и вычитания трехзнач­ных чисел;

2) рассматриваются устные приемы сложения и вычитания многознач­ных чисел, основанные на знании нумерации: 300 тыс. + 200 тыс.;

375 тыс. - 75 тыс.; 9999 + 1; 100 000 - 1 и др.

При этом должна осуществляться работа по обобщению и система­тизации знаний детей. С этой целью следует проводить повторение всех вопросов, связанных с этими действиями:

- названия компонентов и результата действий; зависимость между ними;

- табличные случаи сложения;

- проверка действий сложения и вычитания.

Изучение сложения и вычитания многозначных чисел следует начать с повторения известных детям письменных приемов сложения и вычита­ния трехзначных чисел, где дети вспоминают запись и рассуждения при выполнении действий.

Затем рассматриваются сложение и вычитание многозначных чисел сначала для наиболее простых случаев, где показывается, что сложение и вычитание многозначных чисел выполняется так же, как и трехзначных:

4752 6857

+ -

3246 2435

Затем следует брать случаи с нарастанием трудности в связи с увели­чением числа переходов через разрядную единицу.

_ 40 726 _ 24 260

32 074 12 435

Первые примеры целесообразнорешать с подробными рассуждения­ми. Затем они сворачиваются.

При изучении сложения и вычитания многозначных чисел детям не придется встречаться с принципиально новыми для них вопросами. Од­нако в этой теме есть моменты, которые требуют особого внимания учи­теля в силу их сложности, трудности для детей. Встречаются здесь и эле­менты нового.

Особо здесь следует обратить внимание на случаи вычитания, когда в уменьшаемом содержится несколько нулей подряд.

1000 70 000 40 100

_

486 19 360 28 092

Эти случаи вызывают определенную трудность у детей в связи с тем, что последовательное раздробление единиц высшего разряда выполня­ется несколько раз.

Чтобы предупредить возникновение этих трудностей и возможных ошибок и тем самым облегчить усвоение детьми этих случаев необходимо провести соответствующую подготовительную работу, в результате которой, детям будет легче ориентироваться в ом, что сотня - это 9 де­сятков и 10 единиц, 1000 - это 9 сотен, 9 десятков и 10 единиц и т.д.

Для этого следует вспомнить с учащимися известные им соотноше­ния (лучше всего это делать на счетах): 10 ед. = 1 дес., 10 дес. = 1 сот., 10 сот. = 1 тыс.

А затем провести рассуждения в обратном порядке: 1 тыс. = 10 сот, 1 сот. = 10 дес.,

1 дес. = 10 ед. Итак, получаем: 1 тыс. = 9 сот. 9 дес. 10 ед.

Решая эти примеры, следует требовать от детей давать подробные объяснения.

Первые примеры на вычитание следует решать с иллюстрацией на счетах и начинать с наиболее простых. Например, возможен такой вари­ант разговора с детьми.

- Давайте решим пример.

_100

Используем счеты.

- Посмотрите, у нас есть одна сотня. А нам надо вычесть б единиц. Как можно заменить сотню на счетах?

- Десятью десятками (сбрасываем косточку на третьей проволоке и откладываем 10 косточек на второй проволоке). Отметим это на примере.

*

_ 100

- Теперь, что мы можем сделать?

- Взять один десяток и заменить его десятью единицами (сбрасыва­ем одну косточку на второй проволоке и откладываем 10 косточек на первой проволоке). Отметим опять это на примере.

**

_100

- Смотрим на счеты, что мы теперь имеем: была одна сотня, а те­перь 9 десятков и 10 единиц - это можно записать и в примере. Ведем рассуждения:

- Из нуля единиц б единиц отнять нельзя. Возьмем 1 сотню (ставим точку) - это 10 десятков. Из них берем один десяток (ставим точку) - это 10 единиц, а десятков осталось 9.

Вычитаем: из 10 единиц вычесть 6 получится 4 единицы и 9 десят­ков. Ответ: 94.

Также подробно с использованием счетов следует решить еще один пример.

 

***

_1000

86

914

Рассуждения: Из нуля единиц 6 единиц отнять нельзя. Возьмем 1 тысячу - это 10 сотен. Из них берем одну сотню и заменим 10 десятками, из них берем 1 десяток - это 10 единиц. Получили 9 сотен 9 десятков и 10 единиц.

Вычитаем из 10 единиц вычесть 6 единиц получится 4 единицы, из 9 десятков вычесть 8 десятков получится 1 десяток и 9 сотен. Ответ: 914.

Постепенно примеры усложняются.

К этой же теме относят и действия над величинами метрической си­стемы мер. При рассмотрении этих вопросов мы показываем детям, что величины необходимо выразить в мерах одного наименования и над по­лученными числами выполнить соответствующие действия.

Например:

5т 750 кг + 4т 580 кг = 10т 330 кг

Выражаем величины в единицах одного наименования:

5т 750 кг = 5750 кг

4т 580 кг = 4580 кг

Выполняем действия над отвлеченными числами:

+ 5750

4580

В ответе число записываем в таком виде, в каком числа даны в усло­вии, то есть в виде составного именованного числа.

В числе 10330 кг выделяем число тонн и килограммов, это 10 т 330 кг.

Целесообразно познакомить детей и с другим способом выполнения действий над составными именованными числами, без предварительных преобразований:


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал