Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Реализация интегрирующих цифровых фильтров.
Перед решением общей задачи дискретизации аналогового прототипа рассмотрим предварительно реализацию интегрирующих цифровых фильтров. Уравнение непрерывного аналога имеет вид . Применяя для численного интегрирования метод прямоугольников, получим и тогда . Разностному уравнению соответствует передаточная функция . (114) Применяя вместо формулы прямоугольников формулу трапеций, получим , при этом . (115) Логарифмические частотные характеристики цифрового фильтра (115) представлены на рис.46, откуда видно, что ЛАФЧХ непрерывного и дискретного корректирующих устройств совпадают только в диапазоне низких частот. Отметим, что возможно применение более точных формул численного интегрирования, дающих лучшее приближение к непрерывному звену, Рассмотрим задачу реализации непрерывного корректирующего устройства, заданного своей передаточной функцией . с помощью цифрового фильтра. Один из способов ее решения [5] состоит в замене непрерывного интегратора цифровым с передаточной функцией (114) или (115). При этом передаточную функцию D(p) записывают по отрицательным степеням P, т.е. . Передаточная функция цифрового фильтра находится с помощью перехода , где - определенная функция, соответствующая тому или иному способу численного интегрирования. Например, при использовании формулы (115) , и тогда . Возможно применение других форм , при которых цифровой фильтр будет иметь иную z -передаточную функцию D(z).
|