![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Экономичность.
Экономичность модели характеризуется затратами вычислительных ресурсов для ее реализации, а именно затратами машинного времени Тм и памяти Пм. Общие затраты Тм и Пм на выполнение в САПР какой-либо проектной процедуры зависят как от особенностей выбранных моделей, так и от методов решения. В большинстве случаев при реализации численного метода происходят многократные обращения к модели элемента, входящего в состав моделируемого объекта. Тогда удобно экономичность модели элемента характеризовать затратами машинного времени при обращении к модели, а число обращений к модели должно учитываться при оценке экономичности метода решения. Экономичность модели по затратам памяти оценивается объемом оперативной памяти, необходимой для реализации модели. Требования широких областей адекватности, высокой степени универсальности, с одной стороны, и высокой экономичности - с другой, являются противоречивыми. Наилучшее компромиссное удовлетворение этих требований оказывается неодинаковым в различных применениях. Это обстоятельство обусловливает использование в САПР многих моделей для объектов одного и того же типа - различного рода макромоделей, многоуровневых, смешанных моделей и т. п. Функциональные и структурные модели Признак классификации Математические модели Характер отображаемых свойств объекта Структурные, функциональные Принадлежность к иерархическому уровню Микроуровень, макроуровень, метауровень Степень детализации описания внутри одного уровня Полные, макромодели Способ представления свойств объекта Аналитические, алгоритмические, имитационные Способ получения Теоретические, эмпирические По характеру отображаемых свойств объекта математические модели делятся на структурные и функциональные. Структурные математические модели предназначены для отображения структурных свойств объекта. В свою очередь, структурные математические модели делятся на топологические и геометрические. Описание математических соотношений на уровнях структурных, логических и количественных свойств принимает конкретные формы в условиях определенного объекта. Функциональные математические модели предназначены для отображения физических или информационных процессов, протекающих в технологических системах при их функционировании. Обычно функциональные математические модели представляются системой уравнений, описывающих фазовые переменные, внутренние, внешние и выходные параметры. В проектных процедурах, связанных с функциональным аспектом проектирования, как правило, используются математические модели, отражающие закономерности процессов функционирования объектов, т.е. функциональные модели. Типичная функциональная модель представляет собой систему уравнений, описывающих либо электрические, тепловые, механические процессы, либо процессы преобразования информации. В то же время в процедурах, относящихся к конструкторскому аспекту проектирования, преобладает использование математических моделей, отражающих только структурные свойства объекта, например его геометрическую форму, размеры, взаимное расположение элементов в пространстве, т. е. структурные модели. Структурные модели чаще всего представляются в виде графов, матриц инциденций и смежности, списков и т. п. Как правило, функциональные модели более сложные, поскольку в них отражаются также сведения о структуре объектов. Однако при решении многих задач конструирования использование сложных функциональных моделей неоправданно, так как нужные результаты могут быть получены на основе более простых структурных моделей. Функциональные модели применяют преимущественно на завершающих этапах верификации описаний объектов, предварительно синтезированных с помощью структурных моделей. Проектирование технологического процесса изготовления изделия также характеризуется различными иерархическими уровнями: самый высокий уровень - разработка принципиальной схемы технологического процесса, который включает отдельные этапы, причем этап может содержать несколько или одну операцию. В данном случае оператором будет являться этап технологического процесса. Моделирование технологических процессов разного уровня происходит с помощью различных моделей и алгоритмов. Иерархические уровни математических моделей делятся на микроуровни, макроуровни и метауровни. Особенностью математических моделей на микроуровне является отображение физических процессов в непрерывном пространстве и времени. С помощью дифференциальных уравнений в частных производных рассчитываются поля механических напряжений и деформаций. На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению математических моделей на этом уровне в виде обыкновенных дифференциальных уравнений. В этих моделях имеются две группы переменных - независимых (время) и зависимых (фазовых). математические модели на метауровне описывают укрупненно рассматриваемые объекты (технологические системы и т. п.). В качестве математического аппарата используют обыкновенные дифференциальные уравнения, теорию массового обслуживания, элементы дискретной математики (сети Петри и т. д.). Теоретические модели строят на основании изучения закономерностей. В отличие от формальных моделей (например, эмпирических) они в большинстве случаев более универсальны и справедливы для широких диапазонов изменения технологических параметров. Теоретические модели могут быть линейными и нелинейными, а в зависимости от мощности множества значений переменных модели делят на непрерывные и дискретные. При технологическом проектировании наиболее распространены дискретные модели, переменные которых представляют собой дискретные величины, а множество решений - счетно. Различают также модели динамические и статические. В большинстве случаев проектирования технологических процессов используют статические модели, уравнения которых не учитывают инерционность процессов в объекте. В полной математической модели учитываются связи всех элементов проектируемого объекта, например маршрутная технология. Макроматематические модели отображают значительно меньшее число межэлементных связей. Аналитические математические модели представляют собой функциональные модели (теоретические или эмпирические) и, как правило, используются при параметрической оптимизации технологических процессов. Алгоритмическая математическая модель представляется в виде алгоритма. Имитационная модель является алгоритмической, отражающей поведение исследуемого объекта во времени при заданных внешних воздействиях на объект (например, процесс подготовки управляющих программ для роботизированной сборки). Выбор типа математического моделирования, наиболее эффективного в условиях конкретной задачи, определяется его технологической сущностью, формой представления исходной технологической информации, общей целью исследования. В зависимости от сложности задачи используются различные принципы построения моделей. Зачастую возникает необходимость разработки менее точной модели, но тем не менее более полезной для практики. Возникают две задачи: с одной стороны, нужно разработать модель, на которой проще всего получить численное решение, а с другой - обеспечить максимально возможную точность модели. С целью упрощения модели используются такие приемы, как исключение переменных, изменение характера переменных, изменение функциональных соотношений между переменными (например, линейная аппроксимация), изменение ограничений (их модификация, постепенный ввод ограничений в условие задачи). Модели, являясь эффективным средством при исследовании структуры задачи, позволяют обнаружить принципиально новые стратегии.
|