![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Подходы к верификации.
Существуют два подхода к верификации проектных процедур: аналитический и численный. Аналитический подход основан на использовании формальных методов доказательства соответствия двух сравниваемых описаний. В настоящее время класс объектов, для которых удается реализовать аналитический подход, ограничен. Численный подход основан на математическом моделировании процессов функционирования проектируемых объектов. Моделирование—это исследование объекта путем создания его модели и оперирования ею с целью получения полезной информации об объекте. При математическом моделировании исследуется математическая модель (ММ) объекта. Математической моделью технического объекта называется совокупность математических объектов (чисел, скалярных переменных, векторов, матриц, графов и т. п.) и связывающих их отношений, отражающая свойства моделируемого технического объекта, интересующие инженера-проектировщика. Математическая модель, отражающая поведение моделируемого объекта при заданных изменяющихся во времени внешних воздействиях, называется имитационной. При конструировании необходимо определить прежде всего геометрические и топологические свойства объектов: форму деталей и их взаимное расположение в конструкции. Эти свойства отображаются с помощью структурных математических моделей, которые могут быть выражены уравнениями поверхностей и линий, системами неравенств, графами и т. п. При функциональном проектировании моделируют состояние или процессы - последовательности сменяющих друг друга состояний объекта. Такое моделирование осуществляется с помощью функциональных математических моделей. Типичная форма функциональных математических моделей - система уравнений, выражающая взаимосвязи между фазовыми ui (характеризуют состояние объекта), внешними qk (характеризуют состояние внешней по отношению к объекту среды) и независимыми переменными, которыми могут быть время t и пространственные координаты х1, х2, х3. Решением системы уравнений являются зависимости элементов вектора V фазовых переменных от Z =(t, х1, х2, х3), представляемых в виде совокупности графиков или в табличной форме. Верификация на основе моделирования заключается в установлении соответствия проектного решения, представленного математической моделью Мпр, исходному (эталонному) описанию, заданному в виде ТЗ или модели Мэт иного иерархического уровня или аспекта, нежели Мпр. Обе модели в общем случае имеют разные размерности и состав векторов фазовых переменных. При верификации должны использоваться одинаковые векторы внешних параметров Q= (q1, q2,..., ql). В этом случае обе модели должны приводить к одинаковым, в пределах заданной точности, зависимостям Vэт(Z) и Vпр(Z), где Vэт и Vпр - векторы фазовых переменных на выходах проектируемого объекта (или, что то же самое, на границах, отделяющих объект от внешней среды). Типичные внешние параметры -температура окружающей среды, напряжения источников питания, параметры входных сигналов и нагрузки. Соответствие двух описаний (моделей), в указанном выше смысле, называют функциональной эквивалентностью. Векторы Z, Q, Vэт и Vпр или их отдельные элементы могут быть как дискретными (в частности, элементами векторов Vэт и Vпр могут быть булевы переменные), так и непрерывными Если в результате моделирования для каждого тестового воздействия получают с оговоренной точностью совпадение выходных параметров, рассчитанных с помощью сравниваемых моделей, то говорят о соответствии (корректности) проверяемого описания. В практических задачах количество точек пространства (Z, Q) слишком велико, поэтому актуально сокращение числа испытаний при верификации. Процедуры структурного синтеза по характеру проектируемого объекта делятся на: - синтез схем (принципиальных, функциональных, структурных, кинематических и др.) - конструкций (определение геометрических форм, взаимного расположения деталей) - процессов (технологических, вычислительных и др.) - документации (чертежей, пояснительных записок, ведомостей и др.). Основные процедуры параметрического синтеза - оптимизация номинальных значений параметров элементов - оптимизация их допусков - идентификация моделей - расчеты на основе упрощенных методик
По 2 пункту следует отметить, что важная задача назначения технических требований на параметры объекта, решаемая при внешнем проектировании, отнесена к задаче оптимизации допусков. Идентификация моделей заключается в расчете параметров, используемых в математических моделях. Для процедур оптимизации, как правило, требуется выполнение большого объема вычислений с помощью сложных программных комплексов. В отдельных случаях удовлетворительные результаты параметрического синтеза получаются подобных расчетным методикам неавтоматизированного проектирования. Детерминированная верификация может быть направлена на выявление соответствия структур объектов, заданных двумя различными описаниями (структурная верификация), или значений выходных параметров (параметрическая верификация). Параметрическая верификация может выполняться по полной совокупности параметров или по их части, в последнем случае различают верификацию статическую, динамическую, в частотной области. Статистический анализ предназначен для получения статистических сведений о выходных параметрах при заданных законах распределения параметров элементов. Результаты статистического анализа можно представлять гистограммами, оценками числовых характеристик распределений выходных параметров. Анализ чувствительности заключается в расчете коэффициентов чувствительности выходных параметров yiк изменениям параметров элементов (или внешних параметров) xi. Различают абсолютный и относительный коэффициенты чувствительности: где xiн и yjн- номинальные значения параметров xi и yi соответственно. Задачи, в которых исследование свойств объекта сводится к однократному решению уравнений модели при фиксированных значениях внутренних и внешних параметров, называются задачами одновариантного анализа. Задачи, требующие многократного решения уравнений модели при различных значениях внутренних и внешних параметров, называются задачами многовариантного анализа. 1.3 Состав САПР Виды обеспечения САПР. Компонентами САПР являются виды обеспечения - техническое, - математическое - программное, - лингвистическое - информационное, - методическое - организационное. Техническое обеспечение — совокупность технических (аппаратных) средств, используемых в САПР для переработки, хранения, передачи информации, организации общения человека с ЭВМ, изготовления проектной документации. К техническому обеспечению САПР относят также средства организационной техники, различное измерительное оборудование для получения данных, используемых при проектировании. Математическое обеспечение - совокупность математических моделей, методов, алгоритмов для решения задач автоматизированного проектирования. Математическое обеспечение реализуется в программном обеспечении САПР. Программное обеспечение - совокупность программ, представленных в заданной форме, вместе с необходимой программной документацией, предназначенная для использования в САПР. Лингвистическое обеспечение - совокупность языков, используемых в САПР для представления информации о проектируемых объектах, процессе и средствах проектирования, которой обмениваются люди с ЭВМ и между собой в процессе автоматизированного проектирования. Информационное обеспечение - документы, содержащие описания стандартных проектных процедур, типовых проектных решений, комплектующих изделий, материалов и другие данные, а также файлы и блоки данных с записью указанных документов. Методическое обеспечение - документы, в которых отражены состав, правила отбора и эксплуатации средств автоматизированного проектирования. Иногда понятие методического обеспечения расширяют, включая в него лингвистическое и математическое обеспечения. Организационное обеспечение - положения, инструкции, приказы, штатные расписания, квалификационные требования и другие документы, регламентирующие организационную структуру подразделений проектного предприятия и их взаимодействие с комплексом средств автоматизированного проектирования.
|