Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Додавання і віднімання з переходом через розряд. Це найбільш складний розділ вивчення математики в 5-му класі допоміжної школи
Це найбільш складний розділ вивчення математики в 5-му класі допоміжної школи. Труднощі засвоєння цього матеріалу в тому, що усне додавання і віднімання починається з вищих розрядів, а письмове з нижчих. При усному додаванні і відніманні в основному застосовуються алгоритми обчислення прикладів в межах 100, а при письмовому - табличне додавання і віднімання в межах 20. Тому однією з причини помилкового обчислення прикладів є слабкі знання учнями цієї таблиці. 347 243 + 5 – 5 353 236 Особливо багато помилок учні допускають при обчисленні прикладів з переходом через розряд у двох розрядах, коли в одному з розрядів є нуль або нуль у знаменнику, коли в середині зменшуваного є одиниця. Наприклад: 352 _ 645 + 432 _ 510 _ 500 + 179378269234378 431 367 601 386 232
Ці помилки обумовлюються слабкістю розуміння позиційного значення цифри в числі, порушення уваги, пристосування своїх знань до завдань. Наприклад: 235 235 _ 235 _ 235 + 6 + 62 17 7 835 855 145 232
Вивчення цих варіантів обчислення прикладів передбачає повторення з учнями додавання і віднімання з переходом через розряд в межах 20 і 100. При цьому вчитель обов'язково концентрує увагу школярів на тих випадках, де вони допускають найбільше помилок. Також потрібно враховувати, що для того, щоб школярі успішно виконували письмове додавання і віднімання необхідно сформувати в них вміння: правильно і швидко складати і віднімати одноцифрові числа; перетворювати одиниці нижчого розряду у одиниці вищого при додаванні і навпаки – при відніманні; знати місце цифри у числі. Учням, які не усвідомили алгоритм запису чисел в стовпчик, пропонується для використання розрядна таблиця, що значно полегшує такий запис:
Вивчення дій першого ступеня в межах 1000 з переходом через розряд відбувається за принципом поступового наростання складності в такій послідовності: а) додавання чисел з перетворенням суми одиниць в десятки; віднімання з перетворенням десятків в одиниці: 423 _ 542 + 327 _ 761 + 3483251527 771 217 342 734
При виконанні обчислення прикладу типу 423 + 348 = міркування може проводитись у такому порядку: + 348 " До 3 одиниць додамо 8 одиниць, отримаємо 11 одиниць. 11 одиниць – це 1 десяток і 1 одиниця. 1 одиницю записуємо під одиницями, а 1 десяток для того, щоб ми його не забули, записуємо в розряді десятків над цифрою 2. Виконуємо додавання десятків: 2 десятки і 4 десятки буде 6 десятків і додамо ще 1 десяток, який утворився після додавання одиниць і який ми записали зверху – всього отримуємо сім десятків. Записуємо їх під десятками. До 4 сотень додаємо 3 сотні, буде 7 сотень. Записуємо їх під сотнями. Всього отримаємо 771". При виконанні прикладів на віднімання міркування проводяться у такому плані: •10 325 " Від 2 одиниць відняти 5 одиниць неможливо, але в цілому від більшого числа, тобто 542 можна відняти менше число – 325. Тому забираємо 1 десяток і розкладаємо його на одиниці. Для того, щоб ми не забули про те, що забрали 1 десяток з розряду десятків, над цим розрядом ставиться крапка. Над розрядом одиниць пишемо кількість взятих одиниць. 10 одиниць та ще 2 одиниці своїх, всього буде 12 одиниць. Після цього від 12 одиниць віднімаємо 5 одиниць, буде 7 одиниць; записуємо їх під одиницями. Пам'ятаємо, що від 4 десятків ми забрали один, про що нам нагадує крапка: залишилось 3 десятки, від яких віднімаємо 2 десятки, отримуємо 1 десяток. Записуємо його під десятками. Від 5 сотень віднімаємо 3 сотні, залишається 2 сотні. Записуємо їх під сотнями. Всього отримали 217". Аналогічно ведуться міркування і при обчисленні інших типів прикладів з переходом через розряд в одному розряді. б) додавання чисел з перетворенням в сумі десятків у сотні; 1 •10 365 _745 + 274372 669 373
в) додавання і віднімання чисел з переходом через розряд у розряді одиниць і десятків: •10 •10 11 •10 11 •10 456 _843 274 _342 + 276564 + 4856 723 279 322 286
Приклади типу б) і в) обчислюються із застосуванням тих же прийомів, що і при вирішенні прикладу типу а). г) особливі випадки додавання і віднімання, коли в сумі або в остачі отримуємо один або два нулі; коли у зменшуваному є один або два нулі; коли у зменшуваному є нуль і одиниці: •10 •10 •10 11 11 •10 •10 •10 •10 •10 365 365 _365 _508 _508 _300 _710 + 236 + 235156246249128205 601 600 209 262 259 172 505
Ці приклади є досить складними для розумово відсталих дітей. Коментар при виконанні прикладу, наприклад 300 – 128 може бути таким: " Скільки одиниць у зменшуваному? (Нуль). Отже, від 0 відняти 8 одиниць неможливо. Тому потрібно взяти 1 десяток з розряду десятків і розкласти його на 10 одиниць. Але ж і в розряді десятків також стоїть 0. В такому випадку потрібно взяти 1 сотню. (Цей етап доцільно показати наочно з використанням пучків паличок). Зараз ми займемо одну сотню паличок і роздробимо її в десятки, отримаємо 10 десятків. Беремо 1 десяток, розробляємо його на 10 одиниць (паличок). Отже, як бачимо, після виконання цих операцій кількість сотень зменшилась на 1, адже ми її роздробили в десятки. На місці десятків залишається 8 десятків, оскільки 1 десяток ми забрали і роздробили на 10 одиниць. Отже, зменшуване містить 2 сотні 9 десятків і 10 одиниць. Тепер можна виконати дію віднімання: від 10 одиниць відняли 8 одиниць, отримали 2 одиниці. Записуємо їх в розряді одиниць. Від 9 десятків віднімаємо 2 десятки, отримуємо 7 десятків. Записуємо їх в розряді десятків. Від 2 сотень відняли 1 сотню, отримали 1 сотню. Записуємо її в розряді сотень. Таким чином, після виконання всіх перерахованих операцій в різниці ми отримали число 172". Розумово відсталим учням важко спочатку запам'ятати всі числа. Тому для більшого унаочнення необхідно над зменшуваним виконувати надписи: над сотнями - крапку, над десятками – число 10 і крапку над ним, над одиницями - 10 і вже потім обчислювати: •10 •10 _365 128 Не менш складними є і приклади, у яких у зменшуваному на місці десятків стоїть нуль, а одиниці від'ємника більше одиниць зменшуваного, наприклад: •10 •10 _703 435
В такому випадку вчитель організовує бесіду таким чином: " Від 3 одиниць можна відняти 5 одиниць? (Ні)". Що треба зробити, щоб відняти 5 одиниць? (Взяти 1 десяток). Можна це зробити? (Ні, бо в розряді десятків стоїть 0). Тоді що потрібно зробити? (Потрібно брати сотню). Що з нею необхідно зробити? (Роздробити в десятки). Скільки буде десятків? (10 десятків). Ми маємо 10 десятків. Тепер ми з 10 десятків беремо 1 десяток і роздробимо його на 10 одиниць. До них додаємо 3 одиниці, які є в даному числі в розряді одиниць - отримаємо 13. Віднімемо 5 одиниць від 13, залишиться 8. Над розрядом десятків стоїть число десять, а над ним крапка. Від якого числа будемо віднімати З десятки? (Від 9 десятків). Правильно, від дев'яти десятків віднімаємо 3 десятки, отримуємо 6 десятків. Над сотнями теж стоїть крапка. Від якого числа будемо віднімати 4 сотні? (Від 6 сотень). Скільки буде? (2 сотні). Так яка різниця? (268)". ґ) віднімання повних трицифрових, двоцифрових і одноцифрових чисел від 1000; додавання повних трицифрових, двоцифрових та одноцифрових чисел, коли в сумі отримуємо 1000. •10 •10 •10 •10 •10 •10 •10 •10 •10 111 111 111 _1000 _1000 _1000 368 937 993 387286 + 632 + 632 + 7 613 972 994 1000 1000 1000 д) обчислення прикладів з трицифровими числами на додавання і віднімання з трьома компонентами, без дужок і з круглими дужками, з невідомим компонентом. В межах 1000 письмово вирішуються приклади на додавання і віднімання з трьома компонентами без дужок і з круглими дужками. При вирішенні прикладів з трьома-чотирма доданками необхідно вимагати від школярів використовувати прийом перевірки.
Приклад: Перевірка: 108 621 197 + 621 +108 +108 197 197621 926 926 926
При обчисленні прикладів такого типу 987 – 244 – 325 дії доцільно виконувати по порядку: спочатку у стовпчик виконати першу дію (987 - 224), а потім другу (743 - 325). Для тих учнів, які краще встигають з математики, можна зразу ж пояснити вирішення такого прикладу в стовпчик: •10 325 При вирішенні прикладів з дужками ми не раз загострюємо увагу дітей на тому, що спочатку потрібно виконати дію в дужках: 584 – (284 + 138) =. Правило розкриття дужок (якщо перед дужками стоїть знак " плюс" (" мінус"), то, розкриваючи дужки, знак кожного доданка, що в дужках, зберігаємо (змінюємо на протилежний)) у допоміжній школі ми в даний період не пояснюємо і не використовуємо, щоб не заплутувати дітей в обчисленні даних прикладів. Навіть у старших класах (8-й, 9-й, 10-й) його можуть засвоїти лише більш здібні до математики школярі. При вирішенні прикладів з невідомими компонентами перевірка проводиться двома діями: 384 + + 284 = 1000. _1000 _ 616 384284 616 332
Отже, – це число 332. Перевірка: + 332 284 При вирішенні прикладів типу 1000-624-219=учнів потрібно вчити виконувати перевірку, користуючись різними прийомами, але давати їх потрібно не всі одночасно. Приклад: _1000 _ 376 624219 376 157 Варіанти перевірки: 1) 624 2) 624 _1000 3) 157 _1000 4) 157 _1000 + 219 + 219843 + 624781 + 219376 157 843 157 781 219 376 624
|