Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Правила приближенных вычислений и округления результатов






 

Известно, что при измерениях физических величин получаются приближенные числовые значения. При этом приближенные числа следует записывать, сохраняя только верные значащие цифры. При подсчете значащих цифр не считаются нули с левой стороны. Поясним это с помощью табл. 1.

 

Таблица 1

Определение количества значащих цифр

 

Приближенное число Количество значащих цифр Приближенное число Количество значащих цифр
    3, 20  
5 ∙ 103   3, 2  
0, 0107      

 

Например, значение 5000 г получаем при взвешивании тел с точностью до грамма, а 5 ∙ 103 г – при взвешивании с точностью до килограмма. Взвешивание в первом случае было произведено в 1000 раз точнее, чем во втором.

Аналогично число 3, 20 означает, что при измерении учитывались в сотые доли, а в числе 3, 2 – только десятые, т. е. точность в этом случае в 10 раз меньше. Так бывает, в частности, при измерениях микрометром и штангенциркулем.

При математических действиях приближенные числа округляют, если они содержат лишние значащие цифры. Покажем округление до n значащих цифр числа 6 705, 846 (табл. 2).

Таблица 2

Примеры округления

 

Приближенное число Количество значащих цифр Приближенное число Количество значащих цифр
6 705, 85   671 ∙ 10  
6 705, 8   67 ∙ 102  
6 706   7 ∙ 103  

 

Выполняя вычисления, всегда необходимо помнить о той точности, которую можно получить. Приведем правила, при соблюдении которых можно считать, что в среднем полученные результаты будут иметь все знаки верными, хотя в отдельных случаях возможна ошибка в несколько единиц последнего знака.

1. Если некоторые данные содержат больше десятичных знаков (при сложении и вычитании) или больше значащих цифр (при умножении, делении, возведении в степень, извлечении корня), чем другие, то их предварительно следует округлить, сохраняя лишь одну лишнюю цифру.

 

Примеры

 

Вместо 1, 82 следует сложить 1, 82

+ 14, 367 3 + 14, 37

5, 8 5, 8

21, 987 3 21, 99

 

Вместо 83 937 ∙ 0, 4 = 33 577, 8 следует перемножить 84 ∙ 103 ∙ 0, 4 = 33, 6 ∙ 103.

2. При сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколькоих вчисле с наименьшим количеством десятичных знаков.

Пример

1, 82 + 14, 368 3 + 5, 8 = 1, 82 + 14, 37 + 5, 8 = 22, 0.

3. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их в приближенном числе с наименьшим количеством значащих цифр.

Примеры: 83 973 ∙ 0, 4 = 84 ∙ 103 ∙ 0, 4 = 33, 6 ∙ 103 = 3 ∙ 104.

 

.

4. При возведении в квадрат и клуб в результате следует сохранять столько значащих цифр, сколько их имеет возводимое в степень приближенное число.

Примеры: 1, 322 = 1, 74; 3, 63 = 46.

5. При извлечении квадратного и кубического корней в результате следует брать столько значащих цифр, сколько их в подкоренном приближенном числе.

Примеры: = 1, 89 ∙ 10-4; = 1, 61.

6. При вычислении промежуточных результатов следует брать на одну цифру больше, чем рекомендуют правила. В окончательном результате эта " запасная" цифра отбрасывается.

Пример

.

В этом примере сомножитель 5, 1 имеет наименьшее количество значащих цифр (две). Поэтому и окончательный результат получился с двумя значащими цифрами.

Количество значащих цифр в результате, не может быть увеличено, а его точность не может быть повышена путем искусственного набирания знаков (неверных) при математических действиях. Погрешность результата определяется точностью измерительных приборов, тщательностью исходных прямых измерений.

В студенческой практике абсолютная ошибка окончательного результата округляется до одной значащей цифры, а сам результат до того разряда, в котором находится эта значащая цифра.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал