Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






В какой форме в природе распространены аминокислоты. Написать-L, D-форму.






Аминокислоты в природе распространены в L-форме.

7)Витамиины (от лат. vita — «жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи. Автотрофные организмы также нуждаются в витаминах, получая их либо путём синтеза, либо из окружающей среды. Большинство витаминов являются коферментами или их предшественниками. К витаминам не относят микроэлементы и незаменимые аминокислоты.

Г? первитамино? з — острое расстройство в результате интоксикации сверхвысокой дозой одного или нескольких витаминов (содержащихся в пище или витаминсодержащих препаратах).

Чаще всего гипервитаминозы вызываются приёмом резко повышенных доз витаминов А и D.

Лечение производится отменой приёма витаминов, обильным питьём (форсированный диурез), антидотами.

Гиповитаминоз (от гипо (греч.??? — под, внизу) и витамины), болезненное состояние, возникающее при нарушении соответствия между расходованием витаминов и поступлением их в организм; то же, что витаминная недостаточность.

Гиповитаминоз развивается при недостаточном поступлении витаминов. Гиповитаминоз развивается незаметно: появляется раздражительность, повышенная утомляемость, снижается внимание, ухудшается аппетит, нарушается сон. Систематический длительный недостаток витаминов в пище снижает работоспособность, сказывается на состоянии отдельных органов и тканей (кожа, слизистые, мышцы, костная ткань) и важнейших функциях организма, таких как рост, интеллектуальные и физические возможности, продолжение рода, защитные силы организма.

Авитамино? з — заболевание, являющееся следствием длительного неполноценного питания, в котором отсутствуют какие-либо витамины.

цинга — при отсутствии витамина С

куриная слепота - Витамин А

бери-бери — Витамин B1

рахит — Витамин D

пеллагра — Витамин PP

Буквенное обозначение международной номенклатуре

(другие названия — в скобках)

А1, 2

1Ретинол (аксерофтол, противоксерофтальмический витамин)

2Дегидроретинол

Куриная слепота, ксерофтальмия

Последствия гиповитаминоза, Верхний допустимый уровень3000 мкгСуточная потребность900 (взрослые), 400—1000 (дети) мкг рет. экв.

8)Повышение скорости реакции по мере приближения к оптимальной температуре слева объясняется увеличением кинетической энергии реагирующих молекул. При дальнейшем повышении температуры кинетическая энергия молекулы фермента становится достаточной для разрыва связей, поддерживающих вторичную структуру фермента в нативном, каталитически активном состоянии (происходит тепловая денатурация фермента). Вторичная и третичная структура фермента разрушается, что сопровождается потерей каталитической активности.

Для большинства ферментов оптимальная температура равна или выше той температуры, при которой в норме находятся клетки. Для ферментов микроорганизмов, адаптировавшихся к обитанию в природных горячих источниках, оптимальная температура может быть близка к точке кипения воды.

При изменении pH ферменты могут претерпевать конформационные изменения. Для поддержания активной третичной или четвертичной структуры может оказаться необходимым присутствие определенного заряда на группе, удаленной от области связывания субстрата; именно такая ситуация наблюдается в случае гемоглобина.Если заряд этой группы изменится, могут произойти частичное развертывание белковой цепи, или, наоборот, компактизапия молекулы, или же ее диссоциация на протомеры — во всех случаях с потерей активности.

Зависимость активности от определяется следующими факторами.

 

1. Денатурацией фермента при очень высоких или очень низких

 

2. Изменением величины заряда молекул субстрата или фермента. Активность фермента может изменяться в результате изменений либо его структуры, либо заряда функциональных остатков, участвующих в катализе или связывании субстрата.

Скорость ферментативной реакции (равно активность ферментов) определяется присутствием в среде ингибиторов и активаторов, среди которых могут быть как посторонние для организма вещества, так и природные продукты обмена.

И н г и б и т о р а м и называют вещества, вызывающие частичное или полное торможение химических реакций, включая и ферментативные.

Ферменты теряют каталитическую активность при воздействии различных факторов, вызывающих денатурацию (нагревание, кислоты, щелочи, соли тяжелых металлов и др.). Подобное разрушение фермента не рассматривается как ингибирование, так как оно не связано с механизмом действия фермента. Ингибиторы действуют на скорость реакции определенным химическим путем.

Механизм действия ингибиторов может быть самым разнообразным, но в общей форме можно сказать, что ингибитор вступает в соединение с ферментом, образуя соединение фермент-ингибитор.

Наряду с инигибиторами существует целый ряд активаторов ферментов. А к т и в а т о р а м и называют вещества, увеличивающие каталитическую активность ферментов. Среди активаторов встречаются самые разнообразные вещества. Особенно часто роль активаторов ферментов выполняют ионы металлов: калия, кальция, магния, цинка, меди, железа, марганца, кобальта, а из анионов - хлора. Для проявления максимальной активности ферментов требуется определнная концентрация ионов-активаторов в среде.

9)ВОСКА.ВОСКИ, исторически сложившееся название разных по составу и происхождению продуктов, преим. природных, к-рые по св-вам близки пчелиному воску. Природные воски Представляют собой пластичные легко размягчающиеся при нагр. продукты, большинство из к-рых плавится в интервале 40-90°С (см. табл.). Нек-рые воски, напр. пчелиный и буроугольный, являются гетерогенными системами, в к-рых дисперсная кристаллич. фаза распределена в аморфной дисперсионной среде. Воски не смачиваются водой, водонепроницаемы, обладают низкой электрич. проводимостью, горючи. Они не раств. в холодном этаноле, хорошо раств. в бензине, хлороформе, бензоле и диэтиловом эфире. Большинство прир. восков содержит сложные эфиры одноосновных насыщенных карбоновых к-т нормального строения и спиртов с 12-46 атомами С в молекуле. Такие воски по хим. св-вам близки к жирам (триглицеридам), но омыляются только в щелочной среде. Иногда прир. продукты, не содержащие сложные эфиры, напр. парафин, петролатум, церезин, наз. аналогами восков или воскоподобными материалами. Пчелиный воск-смесь сложных эфиров (72%), насыщенных неразветвленных углеводородов С21—С35 (12-15%) и карбоновых к-т С16—С36 (15%), относит. кол-ва к-рых зависят от условий питания пчел и др. факторов. Получают переработкой сот, обрезков вощины и восковых наростов в ульях. Шерстяной (шерстный) воск выделяется кожными железами овец в волосяную луковицу и обильно покрывает шерсть (в кол-ве 5-16% по массе). В его состав входят: сложные эфиры жирных к-т и высших спиртов, в т. ч. ланолинового С11Н21СН2ОН; жирные к-ты (12-40%); спирты (44-45%); углеводороды (14-18%); стерины (холестерин, изохолестерин, эргостерин) в своб. виде и в виде сложных эфиров (10%). Получают из промывных вод шерстомоек или экстрагированием шерсти орг. р-рителями. После обработки щелочами, отбелки окислителями и адсорбентами получают очищенный шерстяной воск-ланолин. Последний в отличие от др. восков образует устойчивые эмульсии с водой, взятой в кол-ве, превышающем массу воска в 1, 8-2 раза. Спермацет содержится вместе со спермацетовым маслом в костных черепных углублениях нек-рых видов китов, особенно кашалотов. Состоит на 98% из цетина С15Н31СООС16Н33. Спермацет отделяют от масла вымораживанием. Гидрируя спермацетовое масло, получают воск, близкий по св-вам спермацету. Китайский воск вырабатывается червецом Coccus ceriferus, к-рый обитает гл. обр. на китайском ясене и образует на нем восковой покров. Содержит сложный эфир гексакозановой к-ты СН3(СН2)24СООН и гексадеканового спирта СН3(СН2)15ОН (95-97%), смолу (до 1%), углеводороды (до 1%) и спирты (до 1%). Шеллачный воск содержится в прир. смоле - шеллаке (ок. 5%). В него входят 60-62% сложных эфиров, 33-35% спиртов, 2-6% углеводородов. Выделяют при охлаждении спиртового р-ра шеллака.

10)Нуклеотиды являются структурной основой для целого ряда важных для жизнедеятельности органических веществ. Наиболее широко распространенными среди них являются макроэргические соединения (высокоэнергетические соединения, содержащие богатые энергией, или макроэргические, связи), а среди последних — аденозинтрифосфатп (АТФ).АТФ состоит из азотистого основания аденина, углевода рибозы и (в отличие от нуклеотидов ДНК и РНК) трех остатков фосфорной кислоты.Молекула АТФ обладает определенными свойствами, которые и привели к тому, что в процессе эволюции ей была отведена столь важная роль в энергетическом метаболизме клеток. Термодинамически молекула АТФ нестабильна, что вытекает из большой отрицательной величины A Gee гидролиза. В то же время ско-рость неферментативного гидролиза АТФ в нормальных условиях очень мала, т.е. химически молекула АТФ высокостабильна. Последнее свойство обеспечивает эффективное сохранение энергии в молекуле АТФ, поскольку химическая стабильность молекулы препятствует тому, чтобы запасенная в ней энергия бесполезно рассеивалась в виде тепла. Малые размеры молекулы АТФ позволяют ей легко диффундировать в различные участки клетки, где необходим подвод энергии извне для выполнения химической, осмотической, механической работы.

И наконец, еще одно свойство молекулы АТФ, обеспечившее ей центральное место в энергетическом метаболизме клетки. Изменение свободной энергии при гидролизе АТФ составляет -31, 8 кДж/моль. Если сравнить эту величину с аналогичными величинами для ряда других фосфорилированных соединений, то мы получим определенную шкалу. На одном из ее полюсов будут расположены фосфорилированные соединения, гидролиз кото-рых приводит к высвобождению значительного количества сво-бодной энергии (высокие отрицательные значения AG). Это так называемые «высокоэнергетические соединения». На другом полюсе будут располагаться фосфорилированные соединения, A G гидролиза которых имеет невысокое отрицательное значе-ние («низкоэнергетические» соединения). Пример высокоэнер-гетического соединения — фосфоенолпировиноградная кислота (AG0' = -58, 2 кДж/моль), низкоэнергетического — глицеро-1-фосфат (AG0' = -9, 2 кДж/моль). АТФ на этой шкале занимает промежуточное положение, что и дает ему возможность наилучшим образом выполнять энергетические функции: переносить энергию от высокоэнергетических к низкоэнергетическим соединениям.

Если часто АТФ называют «энергетической валютой» клетки, то, продолжая эту аналогию, можно сказать, что «валютная единица» выбрана клеткой в процессе эволюции весьма рационально. Порция свободной энергии в макроэргической фосфатной связи АТФ — это как раз та энергетическая порция, использование которой в биохимических реакциях делает клетку высокоэффективным энергетическим механизмом.

Гггг.

11)Гидролиз жиров. В кишечнике под влиянием фермента липазы жиры пищи гидратизуются на глицерин и органические кислоты, которые всасываются стенками кишечника, и в организме синтезируются новые жиры, свойственные данному организму. Они по лимфатической системе поступают в кровь, а затем в жировую ткань. Отсюда жиры поступают в другие органы и ткани организма, где в процессе обмена веществ в клетках опять гидролиэу-ются и затем постепенно окисляются до оксида углерода и воды с выделеиием энергии, необходимой для жизнедеятельности.

В технике гидролиз жиров используют для получения глицерина, высших карбоновых кислот, мыла.

Олеостеаринопальмитин - это жир, в состав которого входит остаток олеиновой, стеариновой и пальмитиновой кислот. Соответственно эти кислоты и получаются при кислотном гидролизе. И конечно получается ещё и глицерин, который входит в состав ЛЮБОГО жира.

А при щелочном гидролизе образуются соли этих указанных кислот кислот - мыла:

СН2-О-СО-С17Н33

СН--О--СО-С17Н35 + 3 КОН = глицерин + С17Н33СООК + С17Н35СООК

СН2-О-СО-С15Н31...+С15Н31СООК

12)Глюкоза (от др.-греч.?????? сладкий) (C6H12O6), или виноградный сахар, или декстроза встречается в соке многих фруктов и ягод, в том числе и винограда, от чего и произошло название этого вида сахара. Является шестиатомным сахаром (гексозой). Глюкозное звено входит в состав полисахаридов (целлюлоза, крахмал, гликоген) и ряда дисахаридов (мальтозы, лактозы и сахарозы), к примеру, в пищеварительном тракте быстро расщепляющихся на глюкозу и фруктозу. Открыта в 1802 году лондонским врачом Уильямом Праутом. В 1819 году Анри Бракконо получил глюкозу из древесных опилок.

ОКИСЛЕНИЕ глюкозы до СО2 и Н2О (аэробный распад). Аэробный распад глюкозы можно выразить суммарным уравнением:

С6Н12О6 + 6 О2> 6 СО2 + Н2О + 2820 кДж/моль.

Этот процесс включает несколько стадий (рис. 7-33).

Аэробный гликолиз - процесс окисления глюкозы с образованием двух молекул пирувата;

Общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитратом цикле;

ЦПЭ на кислород, сопряжённая с реакциями дегидрирования, происходящими в процессе распада глюкозы.

ВОСТАНОВЛЕНИЕ.С6Н12О6> СН2ОН-СНОН-СНОН-СНОН-СНОН-СН2ОН.Глюкоза в Сорбит.

Фотосинтез-тоже реакция восстановления. При фотосинтезе растения синтезируют глюкозу (С6Н12О6) из углекислого газа и воды, используя энергию Солнца. Фотосин­тез — процесс, обратный дыханию. Уравнение фотосинтеза: 6СО2 + 6Н6О = С6Н12О6 + 6О2.

Дддд.

Дайте общую характеристику белкам. Состав, содержание их в продуктах.

Белки, или протеины, -- сложные высокомолекулярные органические соединения (сложные полипептиды), построенные из остатков аминокислот, соединенных между собой амидными связями. В состав одного и того же белка входят различные аминокислоты. При полном гидролизе белок превращается в смесь аминокислот.Молекулярная масса белков весьма велика: так, молекулярная масса альбумина сыворотки крови человека 61 500, у-глобулина сыворотки крови 153 000, гемоцианина улитки б 600 000.Большинство белков в твердом состоянии сохраняет природную, форму (шерсть, шелк) или существует в виде порошка. Только некоторые белки удается выделить в кристаллическом состоянии.Белки разделяются на протеины (простые белки), в состав которых входят только остатки аминокислот и протеиды (сложные белки). Последние дают при гидролизе аминокислоты и какие-либо другие вещества, например, фосфорную кислоту, глюкозу, гетероциклические соединения и т. д.Протеины разделяются на группы в зависимости от их растворимости и положения изоэлектрической точки.Альбумины. Растворимы в воде, при нагревании свертываются. Осаждаются насыщенными растворами солей. Имеют сравнительно небольшую молекулярную кассу. При гидролизе дают мало гликоколя, Входят в состав белка яйца, крови, молока.Глобулины. Нерастворимы в воде. Растворяются в разбавленных растворах солей и осаждаются концентрированными растворами солей. Свертываются при нагревании. Входят в состав мышечных волокон, яйца, молока, крови, растительных семян (конопля, горох).Проламины. Нерастворимы в воде. Растворяются в 60--80 %-ном спирте. Содержат много пролина. Входят в состав растительных белков (глиадин пшеницы, гордеин ячменя, зеин кукурузы).Протамины. Сильные основания. Не содержат серы. Имеют простой аминокислотный состав и низкую молекулярную массу, Входят в состав спермы и икры рыб.Гистоны, Менее сильные основания, Входят в состав многих и сложных белков.Склеропротеины. Нерастворимы в воде, растворах солей, кислот и щелочей. Устойчивы к гидролизу. К этой группе относятся белки опорных и покровных тканей организма: коллаген'костей и кожи, эластин связок, кератины шерсти, еолос, рога, ногтей, фиброин шелка, Характеризуются высоким содержанием серы.Многие растительные продукты, особенно злаковые, содержат белки пониженной биологической ценности: в кукурузе, например, обнаружен значительный дефицит лизина и триптофана, в пшенице -- лизина и треонина. В большинстве растительных материалов обнаруживается недостаток серусодержащих аминокислот. Таким образом, в питании значительной части населения земного шара отмечается определенный дефицит трех аминокислот: лизина, триптофана и метионина, которые в известной мере лимитируют усвоение пищи.Знание особенностей аминокислотных составов различных продуктов позволяет значительно более рационально использовать для удовлетворения аминокислотных потребностей человеческого организма комбинации пищевых продуктов по принципу взаимного дополнения лимитирующих их биологическую ценность аминокислот. С этой точки зрения благоприятными являются сочетания растительных и молочных продуктов. Даже столь простое и широко используемое сочетание ломтя пшеничного хлеба со стаканом молока делает их суммарную аминокислотную формулу значительно более благоприятной, чем при раздельном потреблении тех же продуктов Книга о вкусной и здоровой пище


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал