![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теорема об изменении количества движения системы.
Эта теорема существует в трех различных формах. Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих на систему.
Доказательство: Теорема об изменении количества движения для
Сложим все
что и требовалось доказать. В проекциях на оси координат это утверждение выглядит так:
Теорема. (в дифференциальной форме). Дифференциал от количества движения системы равен сумме элементарных импульсов всех внешних сил, действующих на систему. Умножим левую и правую части уравнения (6.1) на
В проекциях на оси координат это утверждение выглядит так:
Теорема (в интегральной форме). Изменение количества движения системы за какой-либо промежуток времени равно векторной сумме элементарных импульсов всех внешних сил, действующих на систему за этот же промежуток времени. Интегрируя обе части уравнения (**) по времени в пределах от нуля до В проекциях на оси координат это утверждение выглядит так:
|