Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Проверка нормальности распределения результативного признака.






Дисперсионный анализ относится к группе параметрических мето­дов и поэтому его следует применять только тогда, когда известно илидоказано, что распределение признака является нормальным (Суходольский Г.В., 1972; Шеффе Г., 1980 и др.). Строго говоря, перед тем, как применять дисперсионный анализ, мы должны убедиться в нормальности распределения результативного признака. Нормальность распределения результативного признака можно проверить путем расче­та показателей асимметрии и эксцесса и сопоставления их с критическими значениями (Пустыльник Е.И., 1968* Плохинский Н.А., 1970 и др.).

Произведем необходимые расчеты на примере параграфа 8.3, в котором анализируется длительность мышечного волевого усилия.

Действовать будем по следующему алгоритму:

а) определим показатели асимметрии и эксцесса по формулам Н.А. Плохинского и сопоставим их с критическими значениями, указан­ными Н.А. Плохинским;

б) рассчитаем критические значения показателей асимметрии и эксцесса по формулам Е.И. Пустыльника и сопоставим с ними эмпирические значения;

в) если эмпирические значения показателей окажутся ниже критиче­ских, сделаем вывод о том, что распределение признака не отличает­ся от нормального.

Таблица 7.1

Вычисление показателей асимметрии и эксцесса по показателю длитель­ности попыток решения анаграмм

хi i – ) i – )2 i – )3 i – )4
    0, 94 0, 884 0.831 0, 781
    2, 94 8, 644 25, 412 74, 712
    1.94 3, 764 7, 301 14, 165
    -1, 06 1, 124 -1, 191 1, 262
    -0.06 0, 004 -0, 000 0, 000
    0, 94 0, 884 0, 831 0, 781
    -2, 06 4, 244 -8.742 18, 009
    -0, 06 0, 004 -0, 000 0, 000
    4, 94 24, 404 120, 554 595, 536
    3, 94 15, 524 61, 163 240, 982
И   -2, 06 4, 244 -8, 742 18, 009
    -3.06 9, 364 -28, 653 87, 677
    -0.06 0, 004 -0, 000 0, 000
    -0, 06 0.004 -0, 000 0, 000
    -5, 06 25, 604 -129, 554 655, 544
    -2, 06 4, 244 -8, 742 18, 009
Суммы     102, 944 30, 468 1725, 467

Для расчетов в Табл. 7.1 необходимо сначала определить сред­нюю арифметическую по формуле:

где хi - каждое наблюдаемое значение признака;

n - количество наблюдений. В данном случае:

Стандартное отклонение (сигма) вычисляется по формуле:

где хi - каждое наблюдаемое значение признака; среднее значение (среднее арифметическое); n - количество наблюдений. В данном случае:

Показатели асимметрии и эксцесса с их ошибками репрезента­тивности определяются по следующим формулам:

где i ) - центральные отклонения;

σ - стандартное отклонение;

п - количество испытуемых. В данном случае:

 

 

Показатели асимметрии и эксцесса свидетельствуют о достовер­ном отличии эмпирических распределений от нормального в том случае, если они превышают по абсолютной величине свою ошибку репрезентативности в 3 и более раз:

Мы видим, что оба показателя не превышают в три раза свою ошибку репрезентативности, из чего мы можем заключить, что распре­деление данного признака не отличается от нормального.

Теперь произведем проверку по формулам Е.И. Пустыльника. Рассчитаем критические значения для показателей А и Е:

 

 

Итак, оба варианта проверки, по Н.А. Плохинскому и по Е.И. Пустыльнику, дают один и тот же результат: распределение результа­тивного признака в данном примере не отличается от нормального рас­пределения.

Можно выбрать любой из двух предложенных вариантов провер­ки и придерживаться его. При больших объемах выборки, по-видимому, стоит производить расчет первичных статистик (оценок па­раметров) на ЭВМ.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал