Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Поиски неизвестного количества
Математика широко применяется для нахождения неизвестного количества предметов, тел, действий и т. п.
Анализируем. Конфеты ели двое – Малыш и Карлсон. Вначале конфет было 313 штук. Малыш за неделю съедал 7 конфет (по одной в день), а Карлсон – всего две (по воскресеньям). Следовательно, за неделю они оба съедали 9 конфет. Чтобы узнать, сколько конфет съел Карлсон, нужно знать, на сколько воскресений хватило конфет. А это можно узнать, зная сколько было конфет и сколько их съедали за неделю. Решаем.Малыш и Карлсон каждую неделю съедали по 9 конфет. Неполное частное от деления 313 на 9 равна 34, а остаток равен 7. Следовательно, конфет хватило на 34 недели и ещё на несколько дней. Так как эти несколько дней начинаются с пятницы и на них осталось 7 конфет, то ещё одно воскресенье Карлсон получал конфеты. Следовательно, он получал конфеты 35 воскресений и съел 35× 2 = 70 конфет. ■
1. Сколько конфет съел Малыш? 2. На сколько дней хватило конфет? 3. В какой день недели была съедена последняя конфета? 4. Каким будет ответ, если Малыш будет давать Карлсону каждое воскресенье пять конфет? 5. Сколько конфет должно было быть вначале, чтобы при том же режиме их употребления их хватило бы до 1 января 2011 года? Задача 2.Малыш и Карлсон принимали участие в легкоатлетическом забеге в составе 10 друзей. В некоторый момент оказалось, что трое впереди Малыша, а сзади Карлсона – четверо. Сколько в этот момент человек находилось между Карлсоном и Малышом, если никто из бегущих не находился рядом друг с другом? Анализируем.Чтобы подсчитать искомое количество участников забега, нужно рассмотреть два случая – Малыш сзади Карлсона и Малыш впереди Карлсона – и воспользоваться условием об их месте в забеге. Это позволит ответить на поставленный вопрос. Решаем.Если Малыш сзади Карлсона, то сзади Карлсона будут находиться Малыш и ещё 3 человека (4 человека сзади Карлсона). Пусть Малыш бежит непосредственно за Карлсоном. Тогда впереди Малыша – Карлсон и ещё двое (впереди Малыша трое), между Малышом и Карлсоном – ни одного человека (см. рис. 4). Общее число участников забега будет равно 7, что противоречит условию. Аналогично рассматриваются и другие случаи расположения Малыша сзади Карлсона. Итак, этот случай невозможен. Пусть Карлсон сзади Малыша. Тогда сзади его будут находиться четверо друзей, впереди Малыша – трое. Чтобы число участников забега равнялось 10, между ними должен стоять один человек (см. рис. 5). ■ Ответ.Один.
2. Каким будет ответ, если трое будут бежать впереди Карлсона, а четверо сзади Малыша? 3. Каким будет ответ, если впереди Малыша будут пятеро, а сзади Карлсона двое? 4. Сколько должно было бы бежать человек, чтобы выполнялись остальные условия задачи, но Малыш бежал сзади Карлсона?
Анализируем.Изобразим участок в виде квадрата (см. рис. 6), чтобы удобнее было рассуждать. Конечно, можно изобразить и столбы в соответствии с условием, а потом подсчитать их. Но столбов могло быть (в другой задаче) и по 80 на каждой стороне. И тогда непосредственный подсчёт был бы затруднительным. Намного легче найти нужное количество столбов с помощью математических действий. Так как на каждой стороне участка 8 столбов и два из них на её концах, то между концами каждой стороны (между соседними вершинами квадрата!) стоит по 6 столбов. А кроме того, 4 столба стоят по углам участка. Решаем.Из условия следует, что между концами каждой стороны участка должно стоять по 6 столбов. Сторон всего 4. Следовательно, для этих целей требуется 6× 4 = 24 столба. По углам участка должны стоять столбы. Значит, требуется ещё 4 столба. Всего нужно 24 + 4 = 28 столбов. ■ Ответ.28 столбов.
2. Сколько потребуется столбов, если длина участка 100 метров и столбы должны стоять на расстоянии 2 метра друг от друга? 3. Сколько столбов ставили на каждой стороне участка, если всего поставили 60 столбов? 4. Какова длина участка, если всего поставили 120 столбов через каждые 3 метра? Задача 4.Купили 7 книг по математике, информатике и истории. Сколько книг приобрели по каждому предмету, если книг по информатике купили больше, чем по истории, а по математике – меньше, чем по истории? Анализируем.Из условия задачи вытекает, что купили различное число книг по каждому из трёх предметов, больше всего по информатике, меньше всего по математике. Для решения задачи число 7 нужно представить в виде суммы трёх различных натуральных чисел. Решаем.Так как число 7 единственным образом можно представить в виде суммы трёх различных натуральных чисел: 7 = 1 + 2 + 4, то больше всего купили книг по информатике – 4, по истории – 2 и одну по математике. ■
1. Сколько могло бы быть вариантов покупки, если бы купили: а) 8 книг; б) 9 книг? 2. Сколько могло бы быть вариантов покупки, если бы не было условия: по математике купили книг меньше, чем по истории? 3. Сколько могло бы быть вариантов покупки, если бы не было условия: по информатике купили книг больше, чем по истории?
Анализируем. Чтобы, например, из 4-метрового бревна получить 4 столбика длиной 1 м, нужно сделать три распила, на 1 меньше, чем число столбиков: ведь последний распил даёт 2 столбика. По условию можно для каждого вида брёвен определить то их количество, которое предстоит распилить (это частное от деления числа необходимых столбиков на длину ребра). Потом можно найти количество распилов, которое предстоит сделать (это произведение числа распилов для одного бревна на число брёвен) и время, необходимое для работы (на один распил требуется 1 мин). Решаем.Пусть перепиливают 4-метровые брёвна. Одно бревно даёт 4 метровых столбика при трёх распилах (см. рис. 7). Чтобы получить 20 метровых поленьев, надо взять 20: 4 = 5 брёвен и сделать 3× 5 = 15 распилов. Для этого потребуется 1× 15 = 15 мин. Пусть перепиливают 5-метровые брёвна. Одно бревно даёт 5 метровых столбиков при четырёх распилах (см. рис. 8). Чтобы получить 20 метровых столбиков, надо взять 20: 5 = 4 бревна и сделать 4× 4 = 16 распилов. Для этого потребуется 1× 16 = 16 мин. Так как 15 мин меньше 16 мин, то пилить надо 4-метровые брёвна. ■ Ответ.4-метровые рёбра.
2. Сколько из 4-метрового бревна получится полуметровых чурбаков? 3. Нельзя ли уменьшить время выполнения указанной работы, распиливая брёвна разной длины?
Анализируем.Подняться на третий этаж – это значит преодолеть два этажа: с первого на второй и со второго на третий, то есть на один меньше номера этажа. Пользуясь этим, можем определить, сколько надо пройти ступенек, чтобы подняться на один этаж (Количество ступенек между этажами одинаковое!). Далее можно найти, сколько этажей надо преодолеть, чтобы подняться на шестой этаж и сколько пройти при этом ступенек. Решаем.Чтобы преодолеть один этаж, нужно пройти 48: 2 = 24 ступеньки. Чтобы подняться на шестой этаж, надо преодолеть 6 – 1 = 5 этажей и при этом пройти 24× 5 = 120 ступенек. ■ Ответ.120 ступенек.
2. Сколько ступенек надо пройти, чтобы подняться на пятый этаж? 3. Во сколько раз больше надо пройти ступенек, чтобы подняться на седьмой этаж, чем на четвёртый?
|