Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Важнейшие географические открытия, плавания и исследования в Антарктике (в 18-20 ВВ. ). 7 страница






Инструменты и приборы для измерения длин линий. Для обычных измерений длин линий применяют стальные мерные ленты (рис. 1) длиной в 20 или 50 м, к-рые укладывают по земле, отмечая их концы шпильками. Относительная ошибка измерения лентой зависит от условий местности и в среднем составляет 1: 2000. Для более точных измерений применяют ленты из инвара, к-рые натягивают динамометрами. Таким путём можно снизить ошибку до 1: 20 000-1: 50 000. Для ещё более точных измерений, гл. обр. базисов в триангуляции, применяют базисные приборы с подвесными инварными мерными проволоками длиной в 24 м, относительная ошибка таких измерений имеет порядок 1: 1 000 000, т. е. 1 мм на 1 км длины измеряемой линии.

Рис. 1. Мерная лента.

В геодезич. работах применяют также дальномеры, совмещённые со зрительной трубой или являющиеся насадками на зрительную трубу Г. и. Они позволяют искомую длину линии определять из решения треугольника, вершина к-рого совпадает с передним главным фокусом объектива зрит, трубы инструмента, а его высотой служит измеряемая линия, причём основание и противолежащий ему угол в этом треугольнике известны.

Существуют также электрооптические дальномеры и радиодальномеры, позволяющие измерять расстояние по времени прохождения вдоль измеряемой линии световых волн или радиоволн, скорость распространения к-рых известна.

Инструменты для определения направлений и измерения углов. Для простейшего определения направлений линий относительно меридиана служит буссоль, являющаяся или самостоятельным геодезич. инструментом, или принадлежностью других Г. и. Погрешность буссоли составляет 10-15'. Для более точного измерения направлений и углов в геодезии применяются разнообразные инструменты. Прообразом их явилась астролябия, изобретённая ещё до н. э. и состоявшая из круга с делениями, по к-рому углы отсчитывали с помощью вращающейся линейки с диоптрами, служившими для наведения на предмет. Во 2-й пол. 16 в. начали появляться др. угломерные инструменты, напр, пантометр (астролябия с вертикальным кругом, допускавшая измерение и горизонтальных и вертикальных углов). С 17 в. в угломерных инструментах стали применяться зрительные трубы (1608), микроскопы (1609), верньеры (1631), уровни (1660), сетки нитей (1670). Так сложился основной угломерный инструмент, получивший название теодолита. На рис. 2 представлен большой теодолит Дж. Рамсдена (1783).

Теодолит устанавливают на штативе или столике геодезического знака, подъёмными винтами и по уровню приводят вертикальную ось в отвесное положение, поворотами трубы около вертикальной и горизонтальной осей наводят её на визируемую точку и производят отсчёты по кругам. Это даёт направление, а угол получают как разность двух смежных направлений. В совр. теодолитах (рис. 3) круги изготовляют из оптич. стекла, диаметр делений 6-18 см, наиболее употребительный интервал между делениями 20' или 10', отсчётными устройствами служат шкаловые микроскопы с точностью отсчитывания 1'-6" или т. н. оптич. микрометры с точностью отсчитывания до 0, 2-0, 3".

В 60-х гг. 20 в. для определения направления истинного (географического) меридиана стали применять т. н. гиротео-долиты и различные гироскопич. насадки на теодолиты. Погрешность определения направлений гиротеодолитом составляет 5-10".

Рис. 3. Оптический теодолит ТО5.

К осевым, закрепительным и наводящим устройствам угломерных инструментов предъявляют высокие требования. Напр., в высокоточных теодолитах угловые колебания вертикальных осей не превышают 2", в пассажных инструментах допустимая неправильность формы их цапф, на к-рых вращается зрительная труба, составляет доли микрона. Закрепительные устройства не должны вызывать упругих деформаций в осевых системах и смещений закрепляемых частей инструмента в момент закрепления. Наводящие устройства должны осуществлять весьма тонкие перемещения частей инструмента, напр, повороты с точностью до долей секунды.

Зрительные трубы угломерных и др. Г. и. имеют увеличения в 15-65 раз. Наиболее распространены т. н. трубы с внутр. фокусировкой, снабжённой телеобъективом, заднюю компоненту к-рого, называемую фокусирующей линзой, можно передвигать для получения отчётливого изображения различно удалённых предметов. Точность визирования трубой зависит как от её увеличения, диаметра отверстия объектива, качества даваемого ею изображения, так и от формы, размеров, освещённости и контрастности визируемой цели. С увеличением дальности до цели большее значение приобретает влияние атмосферных помех, снижающих контраст и вызывающих колебания изображения цели. В идеальных условиях хорошие трубы с увеличением в 30-40 раз дают ошибку визирования ок. 0, 3".

К теодолитам примыкают т. н. тахеометры-автоматы и тахеометры-полуавтоматы, позволяющие без вычислений, прямо из отсчётов по рейке, получать редуцированные на горизонтальную плоскость расстояния и превышения точек установки рейки или без вычислений определять только расстояния, а превышения вычислять по найденному расстоянию и измеренному углу наклона.

Инструменты для измерения превышений. Для нивелирования употребляют гл. обр. оптико-механич. нивелиры с горизонтальным лучом визирования; ими производят отсчёт по рейкам, устанавливаемым на точках, разность высот к-рых надо определить. Известны также нивелиры с наклонным лучом визирования, позволяющие с одной установки определять значительные превышения, но из-за меньшей точности они не получили широкого распространения. В нек-рых случаях, напр, для привязки островов к материку, употребляют т. н. гидростатич. нивелиры, основанные на свойстве сообщающихся сосудов сохранять на одной высоте уровень наполняющей их жидкости.

Первые упоминания о нивелирах связаны с именами Герона Александрийского и римского архитектора Марка Витрувия (1 в. до н. э.). Совр. очертания нивелиры начали приобретать с появлением уровней и зрительных труб (17 в.).

Нивелиры с горизонтальным лучом визирования отличаются схемой соединения между собой трёх основных частей нивелира: зрительной трубы с сеткой нитей, фиксирующей визирный луч, уровня, служащего для приведения этого луча в горизонтальное положение, и подставки, несущей трубу и соединённой с вертикальной осью вращения. С сер. 20 в. применяются преим. нивелиры с наглухо соединёнными между собой трубой, уровнем и подставкой, получившие назв. глухих нивелиров (рис. 4). С 50-х гг. 20 в. широкое распространение получили нивелиры с самоустанавливающейся линией визирования, в к-рых для горизонтирования визирной оси взамен уровня применяют компенсатор, представляющий собой оптич. деталь зрительной трубы, подвешенную на маятниковом подвесе. Впервые в мире такой нивелир был изготовлен в СССР в 1946.

При нивелировании употребляют рейки длиной от 1, 5 до 4 м. Шкалы реек для точного нивелирования, где расстояние визирования не превосходит 50 м, имеют штрихи шириной в 1 мм, нанесённые через 5 мм на ин-варной ленте, натянутой в деревянном корпусе пружинами, обеспечивающими постоянство длины шкалы при колебаниях температуры. Для нивелирования низших классов, когда расстояние визирования может достигать 100 м, употребляют деревянные рейки со шкалами из шашек шириной в 1 см с таким же просветом между ними (рис. 5).

Инструменты для графических съёмок. Несмотря на широкое развитие методов стереофотограмметрической съёмки планов и карт, ещё находит применение графическая или мензульная съёмка. Основными инструментами для неё являются мензула и кипрегель.

Ещё в 19 в. выпускались широко применявшиеся в России кипрегели так наз. типа Главного штаба. В 30-х гг. в СССР изготовлялся оригинальный и портативный для этого времени кипрегель КШВ (Ширяева - Вилема) в комплекте с упрощённой мензулой (рис. 6).

История геодезич. инструментостроения в России ведёт своё начало со времён Петра I. Изготовлением Г. и. занимались крупнейшие рус. учёные и изобретатели, начиная с М. В. Ломоносова и И. П. Кулибина. В дальнейшем (конец 18 - нач. 19 вв.) Г. и. изготовлялись в мастерских Академии наук, Главного штаба, Пулковской обсерватории и др., причём большое значение имели труды В. К. Деллена, В. Я. Струве, А. С. Васильева и др. Однако пром. изготовления Г. и. в России почти не существовало и потребность в них удовлетворялась преим. за счёт импорта.

Сов. геодезич. инструментоведение началось в 20-х гг. созданием в Москве фабрик Геодезия и Геофизика, где было налажено и конструирование, и серийное произ-во Г. и. технич. точности. В конце 20-х гг. работы по выпуску отечественных высокоточных Г. и. для создания гос. опорных сетей возглавлял Ф. Н. Красовский; Г. и. изготовлялись на з-де; Аэрогеоприбор (ныне экспериментальный Оптико-механич. завод в Москве). Оптико-механич. пром-стьСССР выпускает ежегодно десятки тысяч Г. и., конструкция и технология произ-ва к-рых находятся на уровне лучших образцов мировой техники.

Лит.: Красовский Ф. Н. и Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1 - 2, М., 1938 - 39; Чеботарёв А. С., Геодезия, 2 изд., ч. 1 - 2, М., 1955 - 62; Литвинов Б. А., Геодезическое инструментоведение, М., 1956; Елисеев С. В., Геодезические инструменты и приборы, [2 изд.], М., 1959; Араев И. П., Оптические теодолиты средней точности, М., 1955; Захаров А. И.и Зуйков И. И., Теодолиты средней точности и оптические дальномеры, М., 1965; Гусев Н. А., Маркшейдерско-геодезические инструменты и приборы, 2 изд., М., 1968; Захаров А. И., Новые теодолиты и оптические дальномеры. М., 1970.

Г. Г. Гордон.

ГЕОДЕЗИЧЕСКИЕ КООРДИНАТЫ, географическая широта и долгота точки земной поверхности, определённые путём геодезич. измерений расстояния (гл. обр. методом триангуляции) и направления (азимута) от нек-рой другой точки, для к-рой геогр. координаты известны. Г. к. вычисляются на поверхности референц-эллипсоида, характеризующего фигуру и размеры Земли, и отличаются от широт и долгот, измеренных астрономич. методами, на малые величины, зависящие от неточности элементов принятого эллипсоида и от отклонений отвеса. В состав Г. к. точки входит также её высота, к-рая отсчитывается от поверхности принятого референц-эллипсоида и отличается от её высоты над ур. м. на величину отклонения геоида от этого эллипсоида.

ГЕОДЕЗИЧЕСКИЕ ЛИНИИ, линии на поверхности, достаточно малые дуги к-рых являются на этой поверхности кратчайшими путями между их концами. На плоскости Г. л.- прямые, на круговом цилиндре - винтовые линии, на сфере- большие круги. Не всякая дуга Г. л. является на поверхности кратчайшим путём; напр., на сфере дуга большого круга, большая полуокружности, не будет на этой сфере кратчайшей между своими концами. Г. л. обладает тем свойством, что их главные нормали являются нормалями к поверхности. Г. л. впервые появились в работах И. Бернулли и Л. Эйлера. Т. к. определение Г. л. связано только с измерениями на поверхности, они относятся к объектам т. н. внутренней геометрии поверхности. Понятие Г. л. переносится в геометрию римановых пространств. Сов. математики А. Д. Александров и А. В. Погорелов исследовали аналоги Г. л. на общих выпуклых поверхностях.

Понятие Г. л. широко применяется в теоретич. и практич. вопросах геодезии.

Точки земной поверхности проектируются на поверхность земного эллипсоида и соединяются Г. л. При этом применяются нек-рые спец. приёмы для перехода от расстояний и углов на земной поверхности к соответствующим дугам Г. л. и углам между ними на поверхности земного эллипсоида.

Лит.: Люстерник Л. А., Геодезические линии, 2 изд., М. -Л., 1940; Александров А. Д., Внутренняя геометрия выпуклых поверхностей, М.- Л., 1948; Погорелов А. В., Лекции по дифференциальной геометрии, 4 изд., Хар., 1967; Келль Н. Г., Высшая геодезия и геодезические работы, ч. 1, Л., 1932; Красовский Ф. Н., Руководство по высшей геодезии, ч. 2, М., 1942.

Э.Г.Позняк.

ГЕОДЕЗИЧЕСКИЕ ПРОЕКЦИИ, отображения поверхности земного эллипсоида на плоскость, осуществлённые по определённым законам. Г. п. применяются для численной обработки геодезических сетей и для решения различных практич. задач с использованием результатов геодезич. измерений на местности, а также при построении топографических карт масштабов крупнее 1: 1 000 000. Теория Г. п. имеет много общего с теорией картографических проекций, однако если от последних требуют в первую очередь малости искажений, то от Г. п.- возможности строгого и простого учёта их. Использование при съёмке местности пунктов геодезич. сетей как опорных приводит к необходимости уложения материалов съёмок в эту сеть без к.-л. дополнительных редуцирований их на плоскость, кроме редукций масштабного характера. Этим обусловлен выбор Г. п. из числа конформных проекций, характеризующихся тем, что во всякой точке проекции сохраняется постоянство масштаба по всем направлениям в пределах малого участка, для к-рого эта точка - центральная, т. е. в малом обеспечивается геом. подобие оригинала и его отображения. Если координаты опорных пунктов съёмки будут вычислены в избранной Г. п. очень точно, то тем самым масштаб будет учтён автоматически и не потребуется никаких редукций съёмочных материалов. Характер деления поверхности эллипсоида на части (зоны) зависит от избираемой Г. п. В теории Г. п. даются формулы, позволяющие строго производить перенос с эллипсоида на плоскость (и обратно) координат точек, длин линий и их направлений, вычислять масштаб и осуществлять переход из одной зоны проекции в другую. Имея такой аналитич. аппарат и выполнив вычисления применительно к начальному пункту геодезич. сети и исходной стороне её, можно затем эту сеть рассматривать на плоскости Г. п. и выполнять обработку её по формулам прямолинейной тригонометрии и аналитич. геометрии.

К Г. п. относятся проекции Гаусса - Крюгера, конич. конформная проекция Ламберта, различные варианты стерео-графич. проекций и др. В СССР и ряде др. стран используется проекция Гаусса- Крюгера. Она определяется как конформная проекция эллипсоида на плоскость, в к-рой на осевом меридиане, изображаемом прямой линией, являющейся осью симметрии проекции, нет никаких искажений. Поверхность эллипсоида при этом делится меридианами на координатные зоны, простирающиеся от одного полюса до другого. Ширина зон по долготе установлена в 6o и 3o. В каждой зоне изображение осевого меридиана принято за ось абсцисс, изображение экватора - за ось ординат. См. также Картографические проекции.

Лит.: Красовский Ф. Н., Руководство по высшей геодезии, ч. 2, М., 1942; Урмаев Н. А., Сферондическая геодезия, М., 1955; Христов В. К., Координаты Гаусса - Крюгера на эллипсоиде вращения, пер. с болг., М., 1957. Г.А.Мещеряков.

ГЕОДЕЗИЧЕСКИЕ СПУТНИКИ, искусственные спутники Земли, запускаемые в качестве объектов наблюдений для решения задач спутниковой геодезии. Материалами для решения таких задач служат измеренные в результате наблюдений направления на тот или иной спутник (позиционные наблюдения) и расстояния до него. Геодезич. связи между пунктами Земли, удалёнными друг от друга до неск. тыс. км (напр., при межконтинентальной космич. триангуляции), устанавливаются путём позиционных фотографич. наблюдений спутника, движущегося на высоте 4-6 тыс. км одновременно из двух или более пунктов. Для обеспечения таких наблюдений спутниковыми фотокамерами средних размеров запускаются надувные Г. с.-баллоны диаметром до 30-40 м из алюминированной пластмассовой плёнки. В динамич. спутниковой геодезии используют более массивные спутники, движение к-рых в меньшей мере зависит от неоднородностей атмосферы, а определяется в основном особенностями гравитационного поля Земли; такие Г. с. запускают на высоты до 3 тыс. км.

Для повышения точности одновременных позиционных наблюдений и измерения расстояний до спутников на Г. с. устанавливается спец. оборудование. Мощные импульсные источники света, работа к-рых контролируется бортовыми кварцевыми часами и управляется с Земли, облегчают позиционные наблюдения и позволяют синхронизовать их с высокой точностью при одновременном участии в работе нескольких станций.

Приёмо-передатчики, ретранслирующие радиосигналы, посылаемые на Г. с. наземными станциями, позволяют путём измерения сдвига фазы принятого на станции сигнала относительно посланного определять расстояния до спутника. Расстояния до Г. с. определяются также на основе анализа изменений частоты сигналов установленных на Г. с. радиопередатчиков вследствие Доплера эффекта. Для измерения расстояний спутниковыми лазерными дальномерами на Г. с. устанавливаются уголковые отражатели. Первый Г. с.-амер. спутник " АННА-1B", оборудованный импульсными лампами, - был запущен в 1962.

Лит.: Меллер И., Введение в спутниковую геодезию, пер. с англ., М., 1967; Инженерный справочник по космической технике, М., 1969.

Н. П. Ерпылёв

ГЕОДЕЗИЧЕСКИЙ И ГЕОФИЗИЧЕСКИЙ СОЮ3 Международный (МГГС), объединяет (на 1 июля 1971) деятельность 7 междунар. ассоциаций: геодезии, сейсмологии и физики недр Земли, метеорологии и физики атмосферы, геомагнетизма и аэрономии, физ. наук об океане, науч. гидрологии, вулканологии и химии недр Земли. Образован в 1919 в Брюсселе. Один из союзов, входящих в Междунар. совет научных союзов ЮНЕСКО. Члены МГГС-коллективы учёных 69 стран. Советский Союз - чл. МГГС с 1955. МГГС проводит крупнейшие междунар. мероприятия в области изучения Земли и околоземного пространства: Международный геофизический год, Международный год геофизического сотрудничества, Международный год спокойного Солнца, Проект Верхняя мантия Земли, Международное гидрологическое десятилетие, Программу по исследованию глобальных атмосферных процессов, Программу изучения ледников и др. Высший орган МГГС - Генеральная ассамблея, созываемая каждые 4 года. Между ассамблеями работой МГГС руководит Исполнительный комитет. Решения, принятые МГГС, реализуются нац. комитетами стран-членов (в СССР - Междуведомственным геофизич. комитетом при Президиуме АН СССР).

Ю. Д. Буланже.

ГЕОДЕЗИЧЕСКИЙ ПУНКТ, точка на земной поверхности, положение к-рой определено в известной системе координат и высот на основании геодезич. измерений. Координаты Г. п. определяют преим. методом триангуляции. В этом случае Г. п. наз. пунктом триангуляции, или тригонометрич. пунктом. Если координаты Г. п. определяются методом полигонометрии, то тогда он наз. полигонометрич. пунктом. Высоты Г. п. определяют методом нивелирования. В общем случае пункты триангуляции и полигоно-метрии не совпадают с пунктами нивелирования. Пункты триангуляции, полиго-нометрии и нивелирные пункты обозначаются и закрепляются на местности путём возведения спец. сооружений (см. Геодезические знаки]. Система взаимно связанных Г. п. образует геодезическую сеть, к-рая служит основой топографич. изучения земной поверхности и всевозможных геодезич. измерений для различных нужд инженерного дела и нар. х-ва.

А. А. Изотов.

ГЕОДЕЗИЧЕСКИЙ ТРЕУГОЛЬНИК, треугольник на поверхности эллипсоида, стороны к-рого являются геодезическими линиями. Важное значение имеет в геодезии, где фигура Земли принимается за эллипсоид (см. Земной эллипсоид). Треугольники на земной поверхности, полученные при измерении триангуляции, строго говоря, не являются Г. т. вследствие сплюснутости Земли. Они приводятся к Г. т. введением в измеренные углы небольших поправок, рассчитанных ма-тем. путём.

ГЕОДЕЗИЧЕСКОЕ ОБРАЗОВАНИЕ (высшее и среднее), система подготовки специалистов по геодезии и картографии. Истоки спец. Г. о. в России относятся к 1779, когда в Москве с целью подготовки землемеров для работ по генеральному межеванию была основана землемерная школа (с 1819 - Константиновское землемерное уч-ще, с 1835 - закрытое среднее спец. уч. заведение, названное Кон-стантиновским межевым ин-том, с 1845- ВУЗ под тем же названием). Однако организованной подготовки гражд. геодезистов в дореволюц. России не было. Межевой ин-т выпускал инженеров по землеустройству и межеванию земель, отдельные выпускники посвящали свою деятельность геодезии; основные геодезич. работы выполняли воен. геодезисты, получавшие образование на геодезич. отделении Воен. академии Ген. штаба, открытом в сер. 19 в., и воен. топографы, к-рых готовили военно-топографич. уч-ща.

Организация Г. о. как самостоятельной отрасли высшего и среднего спец. образования началась после Вел. Окт. революции. В 1917 в Межевом ин-те был создан геодезич. ф-т, положивший начало подготовке инженерных кадров по геодезии и картографии. Развитие Г. о. было связано с запросами социа-листич. строительства. Учёт, выявление и использование природных богатств страны, проектирование и строительство крупных пром. объектов, реконструкция с. х-ва, укрепление обороноспособности страны - всё это требовало совр. геодезич. данных, топографич. и спец. карт различной точности и назначения. Широкое использование достижений геодезич. науки и техники в нар. х-ве и обороне страны обусловили дифференциацию Г. о. по специальностям. С 1922 на геодезич. ф-те Московского (б. Константиновского) межевого ин-та вводятся специальности - астрономо-геодезич., географо-картографическая и геодезич. инструментоведения, в 1924 (в связи с появлением и развитием метода аэрофотосъёмки) - фототопографическая. В 1930 на базе геодезич. ф-та Моск. межевого ин-та был создан первый в мире специализированный геодезич. вуз - Московский геодезич. ин-т, с 1936 - Московский институт инженеров геодезии, аэрофотосъёмки и картографии (МИИГАИК); на базе землеустроит. ф-та Межевого ин-та - Московский институт инженеров землеустройства с двумя ф-тами - землеустроительным и геодезическим. В 50-60-е гг. подготовка инженеров-геодезистов организована в Киевском инженерно-строительном, Каунасском политехнич., Ленинградском горном ин-тах и в ряде др. вузов; во Львовском политехнич. ин-те был создан геодезич. ф-т. Специальности Г. о. имеются в ун-тах: Казанском, Киевском, Дальневосточном, Томском, Уральском и др. Геодезисты готовятся также в системе военно-учебных заведений.

Совр. высшее Г. о. осуществляется по следующим специальностям: астрономо-геодезия (инженеры астрономо-геодези-сты готовятся для выполнения высокоточных геодезич. работ по созданию астрономо-геодезич. и нивелирных сетей высшего класса, гравиметрич. съёмок и решения задач геодезии науч. характера), инженерная геодезия (инженеры-геодезисты - для выполнения геодезич. работ, необходимых для проектирования инженерных сооружений, их строительства и эксплуатации); аэрофотогеодезия (инженеры по производству лётносъёмочных работ, созданию топографич. карт аэрофототопографич. методами и применению аэрофотосъёмки и фотограмметрии для решения различных инженерных задач); картография (инженеры-картографы и географы-картографы для разработки и создания типов карт и атласов, руководства работами по составлению, редактированию и изданию геогр. и топографич. карт различных масштабов, содержания и назначения); оптич. приборы и спектроскопия, приборы точной механики (инженеры по разработке, конструированию и изготовлению геодезич. приборов).

В основе Г. о. лежат циклы общенауч., общественных, ф изико-матем., астрономич. и геогр. дисциплин. В зависимости от специальности определяется комплекс профилирующих предметов, напр, для специальности инженерная геодезия профилирующими являются: геодезия, высшая геодезия, инженерная геодезия, инженерное изыскание, фотограмметрия, практич. астрономия и картография и др. В связи с развитием новой техники геодезич. измерений, основанных на применении электроники и радиотехники и использовании для решения геодезич. задач искусств, спутников Земли, особое внимание уделяется физико-матем. подготовке студентов. В период обучения студенты проходят учебную и производственную практику (геол., геодезич., аэрогеодезич., комплексную геогр., топографич. и др.). Высшее Г. о. ведётся по дневной и заочной формам обучения (срок -5 и 6 лет) и завершается защитой дипломной работы (проекта). Науч. геодезич. кадры готовятся в аспирантуре.

В системе среднего Г. о. приняты следующие специальности: аэрофотосъёмка, фотограмметрия, фототехника, топография, геодезия, инженерная геодезия и картография. Среднее Г. о. в СССР осуществляется в основном в топографич. техникумах: Московском политехникуме, Ленинградском, Киевском, Тбилисском, Ташкентском, Семипалатинском, Новосибирском, Томском и Хабаровском. Техников по топографии и геодезии готовят также Саратовский геологоразведочный, Каунасский с.-х. техникумы, Бакинский, 'Минский, Магаданский политехникумы и спецкурсы с различными сроками обучения.

Геодезич. дисциплины изучаются в вузах студентами строительных, землеустроительных, транспортных, горных, лесотехнич. и мн. др. специальностей, работа по к-рым требует использования геодезич. данных и применения методов геодезич. измерений.

За рубежом Г. о. как самостоятельная отрасль образования получило развитие в 1-й пол. 20 в. Ранее инженерные кадры по геодезии готовились путём переквалификации специалистов, получивших образование в ун-тах или втузах негеоде-зич. профиля.

Г. о. в социалистич. странах дают геодезич. ф-ты (отделения) вузов политехнич. типа или самостоятельных геодезич. вузов. Напр., в Польше - на геодезич. ф-те Варшавского политехнич. ин-та (специальности - основные геодезич. работы, инженерно-пром. геодезия, картография, фототопография и с.-х. геодезия) и на маркшейдерском ф-те Краковского горно-металлургич. ин-та; в Чехословакии - на геодезич. отделении строительного ф-та Высшей технич. школы в Праге; в ГДР - в Дрезденской высшей технич. школе.

Переход к организации Г. о. как самостоятельной отрасли высшего образования наблюдается и в капиталистич. странах. Так, в США, где подготовка инженеров-геодезистов проходила на основе переквалификации специалистов др. профиля, в 1955 при ун-те штата Огайо был открыт Ин-т геодезии, фотограмметрии и картографии. Кроме того, геодезич. подготовка осуществляется во многих ун-тах на физич. и физико-мате-матич. ф-тах. Центрами Г. с. в Великобритании являются ун-ты в Оксфорде, Глазго и Соунси. Во Франции специалисты с Г. о. готовятся в ряде нац. технич. школ и политехнич. ин-тов.

Лит.: Апухтин А., Очерк истории Константиновского межевого института с 1779 по 1879 гг., СПБ, 1879; Красовский Ф., О постановке высшего геодезического образования, Геодезист, М., 1930, № 6; Мазмишвили А. И., Высшая картографо-геодезнческая школа в СССР, в сб.: XX лет советской геодезии и картографии. 1919-1939, [т.] 1, М., 1939; Закатов П. С., Основные задачи высшего геодезического образования в СССР,; Тр. Московского ин-та инженеров геодезии, аэрофотосъемки и картографии, 1959, в. 31, с. 15 - 21; Большаков В. Д., Высшее геодезическое и картографическое образование в СССР, в кн.: 50 лет советской геодезии и картографии, М., 1967; Овчинников Л. В., Подготовка кадров в топографических техникумах, там же; Модринский Н. И., Высшее геодезическое образование в Польской Народной Республике, Изв. высших учебных заведений Министерства высшего и среднего специального образования СССР, раздел Геодезия и аэрофотосъемка, 1958, в. 6.

П. С. Закатов.

ГЕОДЕЗИЯ (греч. geodaisia, от ge - Земля и daio - делю, разделяю), наука об определении фигуры, размеров и гравитационного поля Земли и об измерениях на земной поверхности для отображения её на планах и картах, а также для проведения различных инженерных и нар.-хоз. мероприятий. Назв. -геодезия (землеразделение) указывает на те первоначальные практические задачи, которые обусловили её возникновение, но не раскрывает её совр. науч. проблем и практич. задач, связанных с разнообразными потребностями человеческой деятельности.

Основные задачи геодезии. При определении фигуры и размеров Земли в Г. исходят из понятия об уровенных поверхностях Земли, т. е. о таких поверхностях, на каждой из к-рых потенциал силы тяжести имеет всюду соответствующее постоянное значение и к-рые пересекают направления отвесной линии под прямым углом. Направление отвесной линии в Г. принимают за одну из координатных линий, т. к. оно в каждой данной точке может быть построено однозначно при помощи уровня или даже простейшего отвеса.

Поверхность воды в океанах и сообщающихся с ними морях в состоянии полного покоя и равновесия являлась бы одной из уровенных поверхностей Земли. Эту уровенную поверхность, мысленно продолженную под материками так, чтобы она везде пересекала направление отвесной линии под прямым углом, в Г. принимают за основную уровенную поверхность Земли (рис. 1). Фигуру же этой уровенной поверхности в Г. принимают за сглаженную фигуру Земли и наз. геоидом.

Теория фигуры Земли и результаты астрономич. и геодезич. измерений показывают, что фигура геоида в общем близка к эллипсоиду вращения. Эллипсоид, к-рый по своим размерам и положению в теле Земли наиболее правильно представляет фигуру геоида в целом, называют общим земным эллипсоидом. Изучение фигуры Земли заключается в определении размеров земного эллипсоида и его положения в теле самой Земли, а также отступлений геоида от этого эллипсоида. Если определить высоты точек земной поверхности относительно геоида, т. е. над уровнем моря, то тем самым будет изучена и фигура физ. поверхности Земли.

Размеры земного эллипсоида и его положение в теле Земли устанавливают путём определения направлений отвесных линий в избранных точках земной поверхности и взаимного положения этих точек в известной системе координат. Направление отвесной линии в данной точке характеризуется её астрономич. широтой и долготой, к-рые выводятся из астрономич. наблюдений. Взаимное положение точек земной поверхности определяется их геодезич. широтами и долготами (см. Геодезические координаты), к-рые характеризуют направления нормалей в этих точках к поверхности т. н. референц-эллипсоида. Угол между отвесной линией и нормалью к поверхности референц-эллипсоида в данной точке есть отклонение отвеса и характеризует наклон уровенной поверхности Земли относительно поверхности референц-эллипсоида в этой точке. По наблюдённым отклонениям отвеса в избранных точках определяют как размеры земного эллипсоида, так и высоты геоида (см. Астрономогравиметри-ческое нивелирование).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал