Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Геосинклинальные пояса и древние платформы неогея 5 страница






Г. л. классифицирует миграцию элементов по формам движения материи. Ведущее значение в большинстве ландшафтов имеет биогенная миграция, выражающаяся в биол. круговороте атомов, образовании и разложении орсанич. веществ. В результате круговорота солнечная энергия превращается в действенную химическую энергию. Физико-химическая миграция в основном развивается в водах ландшафта. Она определяет многие его геохимические особенности. По характерным ионам природных вод различают кислые (Н+), кальциевые (Са2+) и прочие ландшафты. Участки земной поверхности, отмеченные определёнными особенностями миграции, именуются геохимическими ландшафтами, все их части - водоразделы, склоны, долины и т. д. - связаны между собой миграцией атомов. Особенности миграции положены в основу геохим. классификации ландшафтов СССР и составления ландшафтно-геохим. карт для территории СССР и отдельных регионов.

Важным принципом Г. л. является историзм. Изучение геохим. особенностей ландшафтов прошлых геол. эпох составляет содержание исторической Г. л. Она применяется при поисках полезных ископаемых, в здравоохранении. Научные и прикладные исследования по Г. л. развиваются в АН СССР, академиях наук союзных республик, университетах, отраслевых исследовательских ин-тах, геол. управлениях.

Лит.: Полынов Б. Б., Геохимические ландшафты, в кн.: Избр. труды, М., 1956; его же. Учение о ландшафтах, там же; Г л азовская М. А., Геохимические основы типологии и методики исследования природных ландшафтов, М., 1964; Добровольский В. В., Атомы в ландшафте, М., 1964; Перельман А. И., Геохимия ландшафта, [2 изд.], М., 1966; его же. Современное состояние геохимии ландшафта и задачи дальнейших исследований, в сб.: Геохимия ландшафта, М., 1967.

А. И. Перельман.

ГЕОХИМИЯ ЛИТОГЕНЕЗА, геохимия осадков, геохимия осадочных пород, раздел геохимии, изучающий хим. состав и физико-хим. процессы образования осадочных пород и руд, их эволюцию в истории Земли, закономерности распространённости, распределения и миграции элементов в осадочной оболочке и гидросфере. Г. л. тесно связана общим объектом исследования с литологией. При реконструкции геохимических процессов используются данные стратиграфии, геотектоники, палеогео-графии и океанологии, а также и наблюдения над современными процессами выветривания, осадконакопления и данные экспериментального воспроизведения равновесных систем (карбонатных, фосфатных, солевых и др.) в качестве моделей процессов и реакций геологич. прошлого, с внесением в них необходимых поправок на эволюционные изменения физико-химич. условий осадочного породообразования. Г. л. изучает процессы, протекающие при относительно низких темп-pax и давлениях, ограниченных интервалом в пределах между значениями, характерными для земной поверхности и верхней границы области регионального метаморфизма.

Г. л. охватывает изучением все стадии осадочного породообразования (см. Литогенез), включая выветривание и мобилизацию исходных веществ в области денудации, их перенос реками в конечные водоёмы стока (внутриматериковые, морские и океанические), накопление в толще формирующихся осадков и последующее перераспределение в процессах диагенеза и эпигенеза. Ставит своей целью установление количественных соотношений различных форм переноса элементов в виде истинных и коллоидных растворов, комплексных соединений, механич. взвесей, сорбции на глинистых и др. минералах, равно как и выявление количественных

закономерностей пространственного распределения элементов в водной среде и в толще осадков. Ведущее значение в Г. л. имеют представления о равновесиях между газами атмосферы, ионным составом вод океана и донными осадками (алюмо-силикатные и карбонат-бикарбонатные равновесия), учение об осадочной дифференциации элементов и о зональном их распределении на площади бассейнов. В этой связи рассматривается проблема соотношения кларкового (рассеяние) и рудного (концентрация) процессов, решение к-рой представляет большой практич. интерес при поисках скрытых рудных залежей.

Значение различных типов хим. реакций в образовании осадочных рудных месторождений не одинаково на разных стадиях литогенеза. При формировании месторождений кор выветривания (бокситы, лселезные и никелевые руды) ведущая роль принадлежит реакциям окисления и гидролиза; в образовании месторождений солей - реакциям осаждения (кристаллизации) из истинных растворов (см. Галогенез)', в образовании месторождений фосфоритов, самородной серы, железных, марганцевых и урановых руд - химико-биол. процессам, сопровождаемым реакциями восстановления и диффузионного перераспределения веществ в поровых растворах.

Осадочное породе- и рудообразование и типы обусловливавших их хим. реакций в значительной степени предопределялись физико-геогр. условиями, существовавшими на земной поверхности в тот или иной период геол. времени, режимом тектонич. движений в пределах данного региона, интенсивностью вулканич. деятельности и многими др. факторами.

Г. л. использует геохим. индикаторы при реконструкции фациальных и кли-матич. условий седиментации, в частности солёности вод древних бассейнов, их газового режима, глубины и темп-ры. Ими являются соотношения химически близких пар элементов и изотопные отношения кислорода, серы, углерода и др. Особое внимание уделяется изучению геохимии органич. вещества, к-рое является не только источником горючих газов и нефтей, но и фактором, определяющим процессы восстановления и миграции поливалентных элементов, образования подвижных элементо-органич. соединений и комплексов.

Г. л. имеет непосредственное отношение к проблеме геохим. баланса хим. элементов во внешних оболочках Земли. Фундаментальной особенностью осадочных пород является отчётливо выраженное различие между их составом и средним составом пород " гранитной" оболочки, представлявшей собой главный источник осадочного материала в течение последних 2-3 млрд. лет земной истории. Различие заключается прежде всего в повышенном против баланса содержании в породах осадочной оболочки воды, углекислоты и органич. углерода, а также S, Cl, F, В и др. " избыточных летучих". Другой важной особенностью осадочных пород является высокое содержание в них кальция, сдвиг отношения K/Na в пользу калия, более высокое отношение окис-ного железа к закисному, повышенное содержание сульфатной серы по сравнению с кристаллич. породами " гранитной" оболочки. Все эти свойства наиболее отчётливо выражены в платформенных осадках, т. к. они представляют собой продукты наиболее глубокого выветривания и резко выраженной поверхностной дифференциации. В отличие от них, геосинклинальные осадки испытывали менее интенсивные изменения (особенно пески) и их состав приближается к составу материнских пород. Малой дифференцированности состава осадков противостоят в геосинклинальных областях глубокие эпигенетические их преобразования, связанные с погружением реак-ционноспособных минералов в области повышенных темп-р и давлений.

Лит.: Страхов Н. М., Типы литогенеза и их эволюция в истории Земли, М., 1963; Геохимия литогенеза. Сб. ст., пер. с англ., М., 1963; Ронов А. Б., Общие тенденции в эволюции состава земной коры, океана и атмосферы, " Геохимия", 1964. №8; Ронов А. Б. и Ярошевский А. А., Химическое строение земной коры, там же, 1967, № 11; Дегенс Э. Т., Геохимия осадочных образований, пер. с англ., М., 1967; Гаррелс Р. М. и Крайст Ч. Л., Растворы, минералы, равновесия пер. с англ., М., 1968; Goldschmidt V. М., Geochemistry, Oxf., 1954.

А. Б. Ронов.

ГЕОХРОНОЛОГИЧЕСКАЯ ШКАЛА, см. в ст. Геохронология.

ГЕОХРОНОЛОГИЯ (отгео... и хронология), геологическое летосчисление, учение о хронологич. последовательности формирования и возрасте горных пород, слагающих земную кору. Различают относительную и абсолютную (или ядерную) Г. Относительная Г. заключается в определении относит, возраста горных пород, к-рый даёт представление о том, какие отложения в земной коре являются более молодыми и какие более древними, без оценки длительности времени, протекшего с момента их образования. Абсолютная Г. устанавливает т. н. абсолютный возраст горных пород, т. е. возраст, выраженный в единицах времени, обычно в миллионах лет. (В последнее время термин " абсолютный возраст" часто заменяют названием изотопный, или радиологич., возраст.)

Относительная Г. Для определения относительного возраста слоистых осадочных и пирокластических пород, а также вулканич. пород (лав) широко применяется принцип последовательности напластования [т. н. закон Стенсена (Стено)]. Согласно этому принципу, каждый вышележащий пласт (при ненарушенной последовательности залегания слоистых горных пород) моложе нижележащего. Относит, возраст интрузивных пород и других неслоистых геол. образований определяется по соотношению с толщами слоистых горных пород. Послойное расчленение геологического разреза, т. е. установление последовательности напластования слагающих его пород, составляет стратиграфию данного района. Для сравнения стратиграфии удалённых друг от друга территорий (районов, стран, материков) и установления в них толщ близкого возраста используется палеонтологический метод, основанный на изучении захороненных в пластах горных пород окаменевших остатков вымерших животных и растений (мор. раковин, отпечатков листьев и т. д.). Сопоставление окаме-нелостей различных пластов позволило установить процесс необратимого развития органич. мира и выделить в геол. истории Земли ряд этапов со свойственным каждому из них комплексом животных и растений. Исходя из этого, сходство флоры и фауны в пластах осадочных пород может свидетельствовать об одновременности образования этих пластов, т. е. об их одновозрастности. Впервые этот метод определения относит, возраста горных пород был применён в нач. 19 в. У. Смитом в Великобритании и Ж. Кювье во Франции. Тогда ему не было дано надёжного теоретич. обоснования. Кювье объяснял различия в составе комплексов ископаемых, встречаемых в пластах горных пород, вымиранием организмов в результате внезапных геол. катастроф и появлением затем новых их комплексов. Последователи Кювье, в том числе франц. геолог и палеонтолог А. Д' Орбиньи, предполагали, что смена органич. мира Земли после каждой катастрофы связана с " творческими актами божества". Учение Ч. Лайеля о медленных естеств. преобразованиях лика Земли и классич. труды Ч. Дарвина и В. О. Ковалевского об эволюционном развитии органич. мира дали материа-листич. обоснование палеонтологическому методу.

В результате трудов неск. поколений геологов была установлена общая последовательность накопления слоев земной коры, получившая назв. стратиграфической шкалы. Верхняя часть её (фанерозой) составлена при помощи палеонтологич. метода с большой тщательностью. Для нижележащего отрезка шкалы (докембрий), соответствующего огромной по мощности толще пород, палеонтологич. метод имеет ограниченное применение из-за плохой сохранности или отсутствия окаменелостей. Вследствие этого нижняя - докембрийская - часть стратиграфич. шкалы расчленена менее детально. По степени метаморфизма горных пород и др. признакам докембрий делится на архей (или археозой) и протерозой. Верхняя - фанерозой-ская - часть шкалы делится на три группы (или эратемы): палеозойскую, мезозойскую и кайнозойскую. Каждая группа делится на системы (всего в фанерозое 12 систем, см. табл. 1). Каждая система подразделяется на 2- 3 отдела; последние в свою очередь делятся на ярусы и подчинённые им зоны. Как системы, так и многие ярусы могут быть прослежены на всех континентах, но большая часть зон имеет только местное значение. Нанкрупней-шим подразделением шкалы, объединяющим несколько групп, служит эонотема (напр., палеозойская, мезозойская и кайнозойская группы объединяются в фанерозойскую эонотему, или фанерозой). Стратиграфич. шкала является основой для создания соответствующей ей геохронологической шкалы, к-рая отражает последовательность отрезков времени, в течение к-рых формировались тс или иные толщи пород. Каждому подразделению стратиграфич. шкалы отвечают определённые подразделения геохронологич. шкалы. Так, время, в течение к-рого отложились породы любой из систем, носит назв. периода. Отделам, ярусам и зонам отвечают промежутки времени, к-рые наз. соответственно эпоха, век, время; группам соответствуют эры. Крупнейшему стратиграфич. подразделению-эоно-теме - отвечает хронологич. термин - зон. Существуют два зона - докембрий-ский, или криптозойский, и фанерозой-ский. Продолжительность более древнего - докембрийского зона составляет ок. 5/6 всей геол. истории Земли. Каждый из периодов фанерозойского зона, за исключением последнего - антропогено-вого (четвертичного), охватывает примерно равновеликие интервалы времени. Антропогеновая система, соответствующая времени существования человека, намного короче. Расчленение антропоге-на проводится, в отличие от других периодов, по фауне наземных млекопитающих, к-рая эволюционирует гораздо быстрее, чем морская фауна (в составе последней за время антропогена не произошло принципиальных изменений), а также на основе изучения ледниковых отложений, характеризующих эпохи всеобщего похолодания. Нек-рые исследователи считают выделение антропогеновых отложений [см. Антропогеновая система (период)] в особую систему неправомочным и рассматривают её как завершающий этап предшествующего неогенового периода.

 

Табл. 1. - Геохронологическая шкала фанерозоя  
Группа (эра) Система (период) Начало, млн. лет назад Продолжительность, млн. лет  
Кайнозойская (продолжительность 67 млн. лет) Антропогеновая (четвертичная) 1, 5* 1, 5*  
Неогеновая   23, 5  
Палеогеновая      
Мезозойская (продолжительность 163 млн. лет) Меловая      
Юрская      
Триасовая      
Палеозойская (продолжительность 340 млн. лег) Пермская      
Каменноугольная   75-65  
Девонская      
Силурийская      
Ордовикская      
Кембрийская      
* По разным данным, от 600 тыс. до 3, 5 млн. лет.  

Подразделения стратиграфич. шкалы, выделенные с помощью палеонтологического метода, и соответствующие им подразделения геол. времени, объединённые в единой геохронологич. шкале, были утверждены в 1881 на 2-м Международном геол. конгрессе в Болонье и с тех пор являются общепринятыми во всём мире. В дальнейшем, благодаря совершенствованию методов палеонтологич. исследования и накоплению новых данных, в первоначальную схему геохронологии Земли вносятся нек-рые изменения и уточнения.

Абсолютная Г. В нач. 20 в. П. Кюри во Франции и Э. Резерфорд в Великобритании предложили использовать радиоактивный распад хим. элементов (см. Радиоактивность) для определения абс. возраста горных пород и минералов. Принцип, положенный этими учёными в основу определений абс. возраста, используется до сих пор. Измерение возраста производится по содержанию продуктов радиоактивного распада в минералах. Процесс распада радиоактивных элементов происходит с постоянной скоростью. В результате радиоактивного распада появляются атомы устойчивых,. уже нераспадающихся элементов, количество к-рых увеличивается пропорционально возрасту минерала. При этом принимается как достаточно обоснованное положение, что скорость радиоактивного распада в истории Земли всё время оставалась постоянной. Разные элементы распадаются с различной скоростью. Распад таких элементов, как уран, торий, калий и нек-рых других, происходит очень медленно, на протяжении нескольких млрд. лет. Напр., любое количество урана (238U) распадается наполовину за время, равное 4, 51*109 лет, тория (232Th) за 1, 41*1010 лет. Эти долгоживущие элементы обычно и используются для определения абс. возраста горных пород и минералов.

В 1907 по инициативе Э. Резерфорда Б. Болтвуд в Канаде определил возраст ряда радиоактивных минералов по накоплению в них свинца. В СССР инициатором радиологич. исследований был В. И. Вернадский. Его начинания продолжили В. Г. Хлопин, И. Е. Старик, Э. К. Герлинг. В 1937 была создана Комиссия по определению абс. возраста геол. формаций.

Цифры, полученные в результате первых определений абс. возраста пород, позволили англ. геологу А. Холмсу в 1938 предложить первую геохронологич. шкалу фанерозоя. Эта шкала неоднократно уточнялась и перерабатывалась. В табл. 1 она воспроизводится на основании новейших данных (Г. Д. Афанасьев, 1968).

Геохронологич. шкала докембрия (см. табл. 2) из-за отсутствия остатков скелетной фауны построена гл. обр. по данным многократных определений абс. возраста магматич. пород на различных материках, что позволило установить одновременность крупных тектономаг-матич. циклов, лежащих в основе деления докембрия (см. Докембрийские эпохи складчатости).


  Табл. 2. - Геохронологическая шкала докембрия  
  Подразделения докембрия Начало, млн. лет назад Продолжительность, млн. лет  
  Протерозой верхний (рифей)      
  средний      
  нижний      
  Архей   > 3500 > 900  

Каждое из принятых в СССР подразделений докембрия - архей и протерозой - по длительности значительно превышает отдельные группы фанерозоя. Протерозой подразделяется на три части - нижний, средний и верхний. Последний вошёл в Г. под назв. рифея, к-рый многие геологи считают подразделением, соответствующим группе.

Наиболее древние породы, найденные на Земле, имеют возраст ок. 3500 млн. лет и знаменуют собой начало архея. Пород, возникших в интервале времени от 3500 до 4500 млн. лет (предполагаемый возраст Земли), с достоверностью не обнаружено.

Методы определения абсолютного возраста. Накопление продуктов радиоактивного распада в течение времени, положенное в основу определений абсолютного возраста, выражается формулой: [ris]где D - число атомов нерадиоактивного вещества, возникших за время t; Р - число атомов радиоактивного элемента в настоящий момент; е - основание натуральных логарифмов;

[ris]- константа распада, к-рая показывает, какая часть атомов радиоактивного элемента распадается за единицу времени (год, сутки, минуты и т. д.) по отношению к первоначальному количеству. Иногда скорость распада выражают периодом полураспада (Т)-временем, в течение к-poro любое количество вещества распадается наполовину. Отношение DIP является функцией возраста (t) минерала. Так: [ris]- 1. Отсюда возраст образца минерала (О может быть вычислен по формуле: [ris]

Истинный возраст может быть определён в том случае, если отношение D/P изменяется только от радиоактивного распада, т. е. минерал представляет собой замкнутую систему.

Основные типы радиоактивного распада, используемые для определения возраста, следующие:

[ris]

В зависимости от конечных продуктов распада выделяют следующие методы ядерной Г: свинцовый (уран-торий-свинцовый), гелиевый, аргоновый (аргон-калиевый), кальциевый, стронциевый (стронциево-рубидиевый) и осмиевый. Наиболее широкое применение из них получили свинцовый, аргоновый и стронциевый.

Свинцовый метод основан на исследованиях радиогенного свинца в минералах (уранините, монаците, цирконе, ортите). Он является наиболее достоверным, поскольку решение задачи о возрасте урано-ториевого минерала достигается по трём независимым уравнениям:

[ris]

Pb, U и Th обозначают содержание в минералах изотопов свинца, урана и тория; [ris]и [ris]- константы распада изотопов[ris]

Если разделить уравнение (1) на (2), то получится уравнение

[ris]

Это уравнение даёт наиболее близкие к истинным значения возраста, что связано с малой его зависимостью от возможных потерь урана и свинца минералом на протяжении его геол. жизни. Оно позволяет вычислить возраст только по одному измеренному отношению [ris]поскольку в наст, время отношение[ris]равно

137, 7 и практически во всех минералах и горных породах одинаково. Совпадение значений возраста, полученных по всем четырём уравнениям, свидетельствует о хорошей сохранности исследованного минерала, правильности проведённых анализов и достоверности вычисленного абс. возраста. Измерение изотопного состава свинца производится на масс-спектрометре (см. Масс-спектроскопия). Однако чаще различные уравнения дают разные значения возраста одного и того же минерала. В этом случае для установления истины прибегают к построению диаграммы в координатах 206Pb/238U: 207Pb/U235). На неё наносят кривую ОА (конкордия), вычисленную теоретически для разных возрастов, и прямую ОВ (изохрона), на к-рую ложатся результаты измерений для нескольких исследованных одновозраст-ных минералов. Истинным возрастом считается значение на пересечении кривой ОА с прямой ОВ.

[ris]

Поскольку все радиоактивные минералы содержат наряду с радиогенным свинцом примесь свинца обыкновенного, при вычислении возраста приходится вносить поправку. Для того, чтобы избежать этого, был предложен метод определения возраста, основанный на измерении изотопного состава свинца в нескольких минералах одной и той же породы с целью построения по полученным результатам изохроны. Диаграмма строится в координатах 207Pb/204Pb; 206Pb/204Pb. Данные изотопного состава свинца минералов, если они одновозрастны, ложатся на одну прямую - изохрону. Тангенс угла наклона этой прямой к оси абсцисс является отношением 207Pb/206Pb, по к-рому согласно формуле определяется возраст породы.

Может быть вычислен также возраст обычных свинцовых минералов, если известен изотопный состав Pb. Обычный свинец состоит из смеси четырёх изотопов 204Pb, 206Pb, 207Pb, 208Pb, из которых 204Рb не связан с радиоактивным распадом и его содержание условно принимается за единицу. Остальные изотопы порождаются и постепенно накапливаются в результате радиоактивного распада урана и тория, причём темп прироста того или иного изотопа определяется соответствующей константой распада. Поэтому свинец разных эпох имеет различный изотопный состав: свинец более древних эпох содержит пониженное количество изотопов с массами 206, 207, 208, а в свинце более молодых эпох количество их увеличено относительно 204Рb. Возраст, вычисленный по изотопному составу рудного свинца, принято называть м о-дельным возрастом, поскольку он справедлив лишь для такой модели (системы), в к-рой отношение Pb:: U: Th изменяется во времени только вследствие радиоактивного распада. В действительности имеют место как совпадения модельного возраста с истинным для ряда месторождений, так и существенные расхождения, к-рые становятся более частыми в молодых геол. формациях.

Аргоновый метод. Основан на радиогенном накоплении аргона в калиевых минералах. Будучи более доступным благодаря лёгкости получения необходимого материала (калиевые минералы) и относительно простой его обработке, пользуется большой популярностью. Отрицат. чертой его является отсутствие внутреннего контроля (одно уравнение). Как показали многочисл. эксперимент, исследования, калиевые минералы сравнительно легко теряют радиогенный аргон. В меньшей степени это относится к слюдам и в значительно большей степени к полевым шпатам, что делает их малопригодными для определения возраста. Важной положит, чертой аргон-калиевого метода является возможность применения его для определения возраста осадочных отложений по минералу глаукониту. Опыт определения возраста неизменённых глауконитов как молодого (мезокайнозойского)так и древнего возраста показал, что глауконит хорошо удерживает аргон и калий вне зависимости от времени. Несмотря на свою сравнительно малую устойчивость минерал этот удобен тем, что даже при небольших изменениях, ставящих под сомнение пригодность данного образца, он сразу же обнаруживает изменение окраски и хим. состава.

Стронциевый метод, основанный на радиоактивном распаде 87Rb и превращении его в 87Sr, в СССР не приобрёл пока большого распространения. Причина заключается в том, что в районах с высоким общим содержанием рубидия последний может быть привнесён в минералы значительно позже времени их образования, в результате чего при определении возраста этих минералов возможны сильные искажения в сторону " омоложения"; наоборот, в районах с интенсивным щелочным метасоматозом рубидий легко выносится из минералов и тогда значение возраста по 87Sr/87Rb становится сильно преувеличенным. Обычно при измерении возраста по 87Sr/87Rb из гранита выделяют составляющие его минералы и в каждом из них определяют 87Sr/86Sr и 8? Rb/86Sr. На диаграмме в координатах B7Sr/86Sr: 87Rb/86Sr данные анализов отдельных минералов гранита располагаются на одной прямой - изохроне, вытянутой вправо вверх. Тангенс угла наклона изохроны с осью абсцисс представляет собой величину 87Sr/87Rb, определяющую возраст данной породы.

Для оценки возраста геол. объектов в пределах 60 000 лет огромное значение приобрёл радиоуглеродный метод, основанный на том, что в атмосфере Земли под воздействием космич. лучей за счёт обильного азота идёт ядерная реакция 14N + n = 14С + Р; вместе с тем 14C радиоактивен и имеет период полураспада более 5700 лет. В атмосфере установилось равновесие между синтезом и распадом этого изотопа, вследствие чего содержание 14С в воздухе постоянно. Растения и животные при их жизни всё время обмениваются углеродом с атмосферой, поэтому концентрация в них 14С поддерживается на постоянном уровне; в мёртвых организмах обмен с атмосферой прекращается и концентрация в них 14С начинает падать по закону радиоактивного распада. Измеряя содержание 14С с помощью высокочувствит. радиометрич. аппаратуры, можно установить возраст органич. остатков. Так, напр., по костям и шкуре мамонта на Таймыре был установлен возраст его захоронения (11 000 лет). Тот же метод помог датировать эпохи оледенения в Европе и Сев. Америке, определить возраст следов древних человеческих культур и т. д.

Лит.: Страхов Н. М., Основы исторической геологии, 3 изд.. ч. 1 - 2, М.- Л., 1948; Старик И. Е., Ядерная геохронология, М.- Л., 1961; Герлинг Э. К., Современное состояние аргонового метода определения возраста и его применение в геологии, М.- Л., 1961; Дан бар К., Роджерс Д ж., Основы стратиграфии, пер. с англ., М., 1962: Казаков Г. А., Тугаринов А. И., Методика определения абсолютного возраста горных пород, в кн.: Верхний докембрнй, М., 1963; Вонткевич Г. В., Возраст Земли и геологическое летосчисление, М., 1965; Тугарин о в А. И., Войткевич Г. В., Докем-брийская геохронология материков, М., 1966; Афанасьев Г. Д., Геохронологическая шкала в абсолютном летосчислении, в кн.: Проблемы геохимии и космологии. Международный геологический конгресс, 23 сессия, М., 1968.

Б. М. Келлер, А. И. Тутринов, Г. В. Войпгкевич. ГЕОЦЕНТРИЧЕСКАЯ СИСТЕМА МИРА (от гео... и центр), существовавшее в древности представление, согласно к-рому Земля неподвижно покоится в центре мира, а все небесные светила движутся вокруг неё. См. Системы мира.

ГЕОЦЕНТРИЧЕСКИЕ КООРДИНАТЫ, системы небесных координат, определяющие положение светил относительно центра Земли.

ГЕПАРД (Acinonyx jubatus), хищник сем. кошачьих. Стройный, длинноногий зверь. Дл. тела до 150 см, хвоста до 75 см, высота в плечах ок. 100 см. Шерсть гладкая, короткая, жёлтого цвета, с равномерно разбросанными по всему телу мелкими чёрными пятнами. Когти большие, тупые, втягивающиеся только частично. Распространён Г. в Африке и Юго-Зап. Азии; в СССР - в Туркмении. Встречается в открытых местах - глинистых пустынях или травянистых саваннах. Осн. добыча - мелкие антилопы; ловит также грызунов и птиц. Охотясь, сначала подкрадывается к добыче, а затем догоняет ее в течение нескольких секунд, развивая скорость до 110 км в час (на коротких дистанциях). Беременность 84-95 дней. В помёте 2-4 детёныша. Очень хорошо приручается; в Индии использовался для охоты на антилоп. В Азии истреблён почти совершенно; исчез и во многих местах в Африке. О. Л. Россолимо.

ГЕПАРИН (от греч. hepar - печень), вещество, препятствующее свёртыванию крови; впервые выделен из печени. Синтезируется в тучных клетках, скопления к-рых находятся в органах животных, особенно в печени, лёгких, стенках сосудов. По хим. природе Г.- серусодержащий мукополисахарид, состоящий из глюкозамина, глюкуроновой к-ты и связанных с ними остатков серной к-ты. Мол. масса ок. 20 000. Г. получают из печени и лёгких кр. рог. скота; применяют в медицине как антикоагулянт для профилактики и лечения тромбозов.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал