Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






VIII. Кино 12 страница






О. А. Иванова, Ф. Г. Мартышев.

ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина, комбинированная вы числительная машина, комбинированный комплекс из неск. электронных вычислительных машин, использующих различное представление величин (аналоговое и цифровое) и объединённых единой системой управления. В состав Г. в. с., кроме аналоговых и цифровых машин (ABM и ЦВМ) и системы управления, обычно входят преобразователи представления величин, устройства внутрисистемной связи и периферийное оборудование (см. структурную схему на рис.). Г. в. с.- комплекс ЭВМ, в этом её гл. отличие от гибридной вычислительной машины, названной так потому, что она строится на гибридных решающих элементах, либо с использованием аналоговых и цифровых элементов.

[ris]

Структурная схема универсальной гибридной вычислительной системы: сплошной линией обозначены информационные, а пунктирной - управляющие каналы.

В литературе часто к Г. в. с. относят ABM с параллельной логикой, ABM с цифровым программным управлением и ABM с многократным использованием оешаюших элементов, снабжённые запоминающим устройством. Такого рода вычислительные машины, хотя и содержат элементы, используемые в ЦВМ, но по-прежнему сохраняют аналоговый способ представления величин и все специфич. особенности и свойства ABM. Появление Г. в. с. обусловлено тем, что для решения мн. новых задач, связанных с управлением движущимися объектами, оптимизацией и моделированием систем управления, созданием комплексных тренажеров и др., возможности отдельно взятых ABM и ЦВМ оказываются уже недостаточными.

Расчленение вычислит, процесса в ходе решения задачи на отдельные опера^ ции, выполняемые ABM и ЦВМ в комплексе, уменьшает объём вычислит, операций, возлагаемых на ЦВМ, что при прочих равных условиях существенно повышает общее быстродействие Г. в. С. Различают аналого-ориентй-рованные, цифро-ориен-тированные и сбалансированные Г. в. с. В системах первого типа ЦВМ используется как дополнительное внешнее устройство к ABM, предназначенное для образования сложных нелинейных зависимостей, запоминания полученных результатов и для осуществления программного управления ABM. В системах второго типа ABM используется как дополнительное внешнее устройство ЦВМ, предназначенное для моделирования элементов реальной аппаратуры, многократного выполнения небольших подпрограмм.

Создание эффективных гибридных комплексов требует в первую очередь уточнения осн. областей их применения и детального анализа типичных задач из этих областей. В результате этого устанавливают рациональную структуру гибридного комплекса и формируют требования к его отдельным частям.

Задачи, к-рые эффективно решаются на Г. в. с., можно разбить на следующие осн. группы: моделирование в реальном масштабе времени автоматич. систем управления, содержащих как аналоговые, так и цифровые устройства; воспроизведение в реальном масштабе времени процессов, содержащих высокочастотные составляющие и переменные, изменяющиеся в широком диапазоне; статистическое моделирование; моделирование биологических систем; решение уравнений в частных производных; оптимизация систем управления.

Примером задачи первой группы может служить моделирование системы управления прокатного стана. Динамика процессов в нём воспроизводится на аналоговой машине, а специализированная управляющая станом машина моделируется на универсальной ЦВМ среднего класса. Вследствие кратковременности переходных процессов в приводах прокатных станов, полное моделирование таких процессов в реальном масштабе времени потребовало бы применения сверхбыстродействующих ЦВМ. Аналогичные задачи часто встречаются в системах управления воен. объектами.

Типичными для второй группы являются задачи управления движущимися объектами, в т. ч. и задачи самонаведения, а также задачи, возникающие при создании вычислит, части комплексных тренажеров. Для задач самонаведения характерно формирование траектории движения в процессе самого движения. Большая скорость изменения нек-рых параметров при приближении объекта к цели требует высокого быстродействия управляющей системы, превышающего возможности современных ЦВМ, а большой ди-намич. диапазон - высокой точности, трудно достижимой на ABM. При решении этой задачи на Г. в. с. целесообразно возложить воспроизводство уравнений движения вокруг центра тяжести на аналоговую часть, а движение центра тяжести и кинематич. соотношения - на цифровую часть вычислит, системы.

К третьей группе относятся задачи, решение к-рых получается в результате обработки мн. реализаций случайного процесса, напр, решение многомерных уравнений в частных производных методом Монте-Карло, решение задач сто-хастич. программирования, нахождение экстремума функций мн. переменных. Многократная реализация случайного процесса возлагается на быстродействующую ABM, работающую в режиме многократного повторения решения, а обработка результатов, воспроизводство функций на границах области, вычисление функционалов - на ЦВМ. Кроме того, ЦВМ определяет момент окончания счёта. Применение Г. в. с. сокращает время решения задач этого вида на неск. порядков по сравнению с применением только цифровой машины.

Аналогичный эффект достигается при использовании Г. в. с. для моделирования процессов распространения возбуждения в биологич. системах. Специфика этого процесса заключается в том, что даже в простейших случаях требуется воспроизводить сложную нелинейную систему уравнений в частных производных.

Поиск решения задачи оптимального управления для объектов выше третьего порядка обычно связан с большими, часто непреодолимыми, трудностями. Ещё больше они возрастают, если необходимо отыскать оптимальное управление в процессе работы системы. Г. в. с. в значит, степени помогают устранить эти трудности и использовать такие сложные в вычислительном отношении методы, как принцип максимума Понтрягина.

Применение Г. в. с. эффективно также при решении нелинейных уравнений в частных производных. При этом могут решаться как задачи анализа, так и задачи идентификации и оптимизации объектов. Примером задачи оптимизации может служить подбор нелинейности теплопроводного материала для заданного распределения температур; определение геометрии летат. аппаратов для получения требуемых аэродинамич. характеристик; распределение толщины испаряющегося слоя, предохраняющего космич. корабли от перегрева при входе в плотные слои атмосферы; разработка оптимальной системы подогрева летат. аппаратов с целью предохранения их от обледенения при минимальной затрате энергии на подогрев; расчёт сети ирригационных каналов и установление оптимальных расходов в них и т. п. При решении этих задач ЦВМ соединяется с сеточной моделью, многократно используемой в процессе решения.

Развитие Г. в. с. возможно в двух направлениях: построение специализированных Г. в. с., рассчитанных на решение только одного класса задач, и построение универсальных Г. в. с., позволяющих решать сравнительно широкий класс задач. Структура такого универсального гибридного комплекса (рис.) состоит из ABM однократного действия, ABM с повторением решения, сеточной модели, устройств связи между машинами, спец. оборудования для решения задач статистич. моделирования и периферийного оборудования. Помимо стандартного математического обеспечения ЭВМ, входящих в комплекс, в Г. в. с. требуются специальные программы, обслуживающие систему связи машин и автоматизирующие процесс подготовки и постановки задач на ABM, а также единый язык программирования для комплекса в целом.

Наряду с новыми вычислит, возможностями в Г. в. с. возникают специфич. особенности, в частности появляются погрешности, к-рые в отдельно работающих ЭВМ отсутствуют. Первичными источниками погрешностей являются временная задержка аналого-цифрового преобразователя, ЦВМ и цифро-аналогового преобразователя; ошибка округления в ана-лого-цифровом и цифро-аналоговом преобразователях; ошибка от неодновременной выборки аналоговых сигналов на ана-лого-цифровой преобразователь и неодновременной выдачи цифровых сигналов на цифро-аналоговый преобразователь; ошибки, связанные с дискретным характером выдачи результатов с выхода ЦВМ. При автономной работе ЦВМ с преобразователями временная задержка, напр., не вызывает погрешности, а в Г. в. с. она не только может вызвать существенные погрешности, но и нарушить работоспособность всей системы.

Анализ погрешностей Г. в. с. имеет значение как для оценки погрешности работы комплекса при решении определённого класса задач, так и для разработки методов повышения точности и эффективности системы. Первичные погрешности автономно работающих ABM и ЦВМ, входящих в Г. в. с., достаточно хорошо изучены, но оценка погрешности при решении с помощью гибридного комплекса нелинейных задач представляет ещё неразрешённую проблему.

Лит.: Исследование кибернетических проблем вычислительно-управляющего комплекса блюминга 1300, в кн.: Управление производством. Труды III Всесоюзного совещания по автоматическому управлению (технической кибернетике), Одесса. 20-26 сент. 1965, M., 1967; Гулько Ф. Б., Коган Б. Я., Pайскинa M. E., О возможном применении вычислительных машин для изучения механизмов развития заболевания, " Автоматика и телемеханика", 1967, № 8, с. 104- 106; Sоudас k А. С., Litllе W. D., An economical hybridizing scheme for applying Monte-Carlo methods to the solution of partial-differential equations, " Simulation", 1965, v. 5,.Ni. 1, p. 9-11; Bekey G. A., Karplus W. J., Hybrid computation, N. Y., 1968. Б. Я. Коган.

ГИБРИДНАЯ ИНТЕГРАЛЬНАЯ СХЕМА, гибридная микросхема, интегральная схема, в к-рой наряду с элементами, неразъёмно связанными на поверхности или в объёме подложки, используются навесные микроминиатюрные элементы (транзисторы, полупроводниковые диоды, катушки индуктивности и др.). В зависимости от метода изготовления неразъёмно связанных элементов различают гибридные плёночную и полупроводниковую интегральные схемы.

Резисторы, конденсаторы, контактные площадки и электрич. проводники в Г. и. с. изготовляют либо последоват. напылением на подложку различных материалов в вакуумных установках (метод напыления через маски, метод фотолитографии), либо нанесением их в виде плёнок (химич. способы, метод шёл-кографии и др.). Навесные элементы крепят на одной подложке с плёночными элементами, а их выводы присоединяют к соответствующим контактным площадкам пайкой или сваркой. Г. и. с., как правило, помещают в корпус и герметизируют. Применение Г. и. с. в электронной аппаратуре повышает её надёжность, уменьшает габариты и массу. И. E. Ефимов.

ГИБРИДНОЕ СОЕДИНЕНИЕ, четырёхплечая радиоволноводная система, в к-рой мощность, поступающая в одно (любое) плечо, делится поровну между двумя другими, а в четвёртое плечо не поступает; при подведении к двум к.-л. плечам когерентных колебаний на третьем будет наблюдаться их сумма, а на четвёртом - их разность. Г. с. применяют в сверхвысоких частот технике: делителях и разветвителях мощности для суммирования и вычитания мощностей колебаний, балансных смесителях для подавления шумов гетеродина приёмника, измерит, устройствах, собранных по мостовой схеме, для измерения нмпедансов (полных сопротивлений) н коэфф. отражения и т. д. Большое разнообразие Г. с. сводят к трём простейшим видам: кольцевому (рис. 1), двойному тройнику (рис. 2) и направленному ответвителю со связью 3 дб. Кольцевое Г. с., или гибридное кольцо, состоит из отрезка замкнутого самого на себя радиоволновода, к к-рому присоединены отводы. Длину окружности (по среднему радиусу) гибридного кольца выбирают кратной половине расчётной длины волны электромагнитных колебаний в нём, а расстояние (по той же окружности) между отд. плечами - кратными четверти расчётной длины волны.
[ris]

Рис. 1.Гибридное кольцо: 1, 2, 3, 4-плечи.
[ris]

Риг. 2. Двойной волноводный тройник: 1, 2, 3, 4-плечи.

Лит.: Xарвей А. Ф., Техника сверхвысоких частот, пер. с англ., т. 1, M., 1965; Jones C. W., Concerning hybrids, " Microwave Journal", 1961, v. 4,. № 10, p. 98 - 104. В. И. Сушкевич.

ГИБРИДНЫЕ ГОРНЫЕ ПОРОДЫ, породы, вещественный состав и строение к-рых не отвечают производным нормальных магм. Г. г. п. обладают неоднородными текстурами и структурами, наличием аномальных парагенезисов минералов, содержат ксенолиты местного и глубинного происхождения. Г. г. п. возникают при: ассимиляции без сохранения признаков поглощённых обломков и контаминации (загрязнении) с сохранением признаков усвоенных обломков. Образованию Г. г. п. также благоприятствуют раздробленность вмещающих пород, обилие в магме летучих веществ, контрастность в составе вмещающих пород и магм. Для интрузивов гранитов при ассимиляции лавового материала основного состава типичен ряд связанных переходами Г. г. п. (от краёв интрузивов к их центр, частям): габбро - габбро-диориты - диориты - кварцевые диориты - граподиориты - граниты. В этом ряду по направлению к гранитам происходит уменьшение содержания Са, Mg, Fe (материал вмещающих пород) и увеличение роли К, Na, Si (гранитная часть). Явления гибридизма известны и для базальтовых лав, когда в результате ассимиляции метаморфич. и др. пород базальтовые лавы приобретают андезитовый состав.
Лит.: Коптев-Дворников В. С., Явления гибридизации на примерах некоторых гранитных интрузий палеозоя Центрального Казахстана, " Тр. Ин-та геологических наук, Петрографическая серия", 1953, в. 148, №44; Лазаренков В. Г., О процессах нормального гибридизма, " Зап. Всесоюзного минералогического общества", 1962, ч. 91, в. 1. В. С. Коптев-Дворников.

ГИБРИДНЫЕ СЕМЕНА, семена, образующиеся в результате скрещивания растений, относящихся к разным формам, сортам, линиям, видам и родам. Г. с. часто дают более высокие урожаи, чем негибридные, что связано с явлением гетерозиса. В с.-х. производстве СССР широко используются Г. с. кукурузы, сах. свёклы, сорго, овощных культур и нек-рых кормовых трав. Изучаются возможности использования Г. с. пшеницы, масличных и др. культур. Высевают, как правило, Г. с. первого поколения; во втором и последующих поколениях урожайность их резко падает. Для выращивания Г. с. кукурузы организована специализированная сеть семеноводческих хозяйств и создана технич. база для их обработки. Благодаря применению цитоплазматич. мужской стерильности (ЦМС) Г. с. кукурузы выращивают без затрат ручного труда на удаление метёлок. Г. с. сах. свёклы получают в результате искусств, скрещивания или свободного ветроопыления. Для получения Г. с. триплоидных сортов соотношение рядов устанавливают из расчёта: на 1 ряд тетраплоидных сортов 3 или 4 ряда диплоидных; ряды многосемянных и односемянных сортов размещают в соотношении 1: 5 или 1: 4. При выращивании Г. с. однолетних самоопыляющихся овощных культур необходимость в кастрации отпадает благодаря применению стерильных форм (напр., у томатов). У огурцов с этой целью используют в качестве материнских форм растения двудомных сортов.

ГИБРИДНЫЕ ЯЗЫКИ, языки, характеризующиеся генетич. неоднородностью лексич. состава, морфологич. и синтак-сич. моделей; см. Креольские языки.

ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, ракетный двигатель, работающий на сочетании твёрдых и жидких компонентов топлива. Один из компонентов, находящийся в твёрдом состоянии, как правило, размещается в камере сгорания, в к-рую подаётся другой (жидкий) компонент. Впервые Г. р. д. разработан в Группе изучения реактивного движения в 1933 (см. Ракетный двигатель).

ГИБРИДОЛОГИЧЕСКИЙ АНАЛИЗ, способ изучения наследств, свойств организма путём скрещивания (гибридизации) его с родств. формой и последующим анализом признаков потомства. Г. а. впервые применил Г. Мендель (1865) для изучения механизма передачи наследств, задатков (генов) от родителей потомкам и для изучения взаимодействия генов у одного и того же организма (см. Менделя законы). В основе Г. а. лежит способность к рекомбинации, т. е. перераспределению генов при образовании гамет, что приводит к возникновению новых сочетаний генов. По этим сочетаниям, к-рые проявляются в потомстве гибридной особи с определённой частотой, можно судить о генотипе родительской формы, а по генотипу родительской формы можно предсказывать генотип потомства. Так, генотип особи, гибридной по паре аллелей, одна из к-рых - доминантная А, другая - рецессивная а, можно представить как Aa. Внешне, т. е. фенотипи-чески (см. Фенотип), такая форма (ге-терозигота) не отличается от формы с генотипом AA (гомозигота). Гибрид (Ла) формирует гаметы двух типов, каждый из к-рых несёт аллель А или аллель а. T. о., гаметы никогда не бывают гибридными. С помощью различных видов скрещивания можно выявить, сколько типов гамет по данному гену формирует организм, и определить его генотип. Если у анализируемой формы (Ла) возможно самооплодотворение (что часто встречается у растений), схематично это будет вы-

[ris]

определённой частотой появляется новая форма -аа.

Если самооплодотворения нет, генотип исходной формы выявляют, скрещивая в разных комбинациях её потомков (" брат X сестра") и анализируя " внучатое" поколение. Др. способ выявления гибридного состояния - анализирующее скрещивание: скрещивание предполагаемого гибрида с рецессивной родительской формой. Г. а. играет важную роль в селекционной практике и племенном деле, т. к. позволяет судить о тождестве фенотипа и генотипа. Здесь Г. а. находит применение в форме " анализа производителей по потомству" с целью выявления у производителей скрытых нежелательных генов. Г. а. применяется также при составлении хромосомных карт (см. Генетические карты хромосом). Знание генного состава хромосомы позволяет путём спец. скрещиваний вводить в геном определённую хромосому или группу генов и создавать формы с нужным генотипом. Этот метод широко применяется в растениеводстве. Г. а. пользуются при изучении взаимодействия генов в первом гибридном поколении (тесты на комплементацию). Г. а. является главным методом генетического анализа.

Лит.: Руководство по разведению животных, пер. с нем., т. 2, M., 1963; Брюбенкер Д ж. Л., Сельскохозяйственная генетика, пер. с англ., M., 1966; Лобашев M. E., Генетика, 2 изд.. Л., 1967.

Ю. С. Дёмин.

ГИБСОНА ПУСТЫНЯ (Gibson Desert), пустыня на 3. Австралии, между Большой Песчаной пустыней на С. и Большой пустыней Виктория на Ю. Поверхность- плато вые. 300-500 м, сложенное докем-брийскими породами, покрытое щебёнкой - продуктом разрушения древнего железистого панциря. На В.- останцо-вые кряжи из гранитов и песчаников вые. до 762 м, на 3.- солончаки. Осадков менее 250 мм в год, выпадают они крайне нерегулярно. Редкие заросли кустарниковой акации, лебеды, злака спиннфекс. Экстенсивное пастбищное скотоводство. Г. п. открыта в 1873 англ, экспедицией Э. Джайлса, названа по имени члена экспедиции А. Гибсона.

ГИГА... (от греч. gigas - гигантский), приставка для образования наименований кратных единиц, по размеру равных Ю9 исходным единицам. Сокращённые обозначения: русское - Г, международное G. Пример: 1 Ггц (гигагерц)= 109 гц.

ГИГАНТ, посёлок гор. типа в Сальском р-не Ростовской обл. РСФСР. Ж.-д. ст. (Трубецкая) на линии Ростов-на-Дону- Сальск. 10 тыс. жит. (1970). Вырос при зерновом совхозе Гигант, созданном в 1928. 3-д с.-х. машиностроения. С.-х. техникум.

" ГИГАНТ", спичечно-мебельный комбинат, одно из крупнейших спичечных предприятий СССР; находится в Калуге. Выпускает спички, мебель, древесно-стружечные плиты и строганую фанеру. Г. введён в действие в 1931; к 1940 вырабатывал ок. 10% общего объёма произ-ва спичек в СССР. Во время Великой Отечеств, войны Г.. был полностью разрушен нем.-фаш. захватчиками. После освобождения Калуги (30 дек. 1941) началось восстановление Г.; в 1949 предприятие было восстановлено. Г. оснащён новым оборудованием; технологич. процесс изготовления спичек полностью механизирован. В 1957 пущен мебельный цех, в 1960 введён в действие цех строга-ной фанеры, в 1964 - цех древесностру-жечных плит. В 1969 выпуск спичек составил 1406 тыс. учётных ящиков. Проектируются реконструкция и расширение спичечного произ-ва. А. В. Золотое.

ГИГАНТИЗМ (от греч. gigas, род. падеж gigantos - исполин, гигант), усиление роста человека. Рост выше 190 см может приобретать патологич. характер. Великаны выше 200 см встречаются редко, самый высокий человек, описанный в литературе, имел рост 320 см. Г. наблюдается чаще у мужчин, проявляется обычно в 9-10-летнем возрасте или в период полового созревания и продолжается в течение физиологического роста организма. Причины Г. не выяснены: предполагают, что Г. связан с усиленной функцией передней доли гипофиза, продуцирующей гормон роста. Великаны при патологическом росте отличаются слабым здоровьем, до старости доживают редко, психика их нередко приближается к детской, половое влечение отсутствует или снижено; внешне - удлинение конечностей, особенно нижних; голова кажется необычайно маленькой. Бывает парциальный (частичный) Г., характеризующийся увеличением части (напр., стоп) пли половины тела. Лечение: рентгено- и гормонотерапия, иногда хирургическое. См. также Акромегалия.

Скелет гиганта (рост 220 см), рядом скелет человека ростом 170 см.

ГИГАНТОПИТЕК (от греч. gigas, род. падеж gigantos - исполин, гигант и pithekos - обезьяна), название рода крупных ископаемых человекоподобных обезьян, обитавших в юж. и юго-вост. областях материковой Азии в сер. антропо-гена. Найдены четыре ниж. челюсти и св. 1000 отдельных зубов Г., очень крупных (особенно коренные, к-рые по объёму в 6 раз больше соответствующих зубов человека). По размерам тела Г. превосходили человека. По нек-рым признакам зубной системы (относительно небольшие клыки др.) Г. более сходны с человеком, чем с совр. человекообразными обезьянами. Это дало основание нек-рым исследователям считать Г. предками людей и предложить т. н. гигантоидную теорию происхождения человека, к-рая, однако, не получила признания.

Лит.: Гремяцкий М. А., Мегагнатные плейстоценовые формы высших ископаемых приматов, в сб.: Ископаемые гоми-ниды и происхождение человека, М., 1966.

В. П. Якимов.

ГИГАНТОСТРАКИ (Gigantostraca), отряд вымерших животных типа членистоногих; то же, что эвриптериды.

ГИГАНТСКИЙ ОЛЕНЬ, ископаемое млекопитающее; то же, что болыиерогий олень.

ГИГАНТСКИХ КРАТЕРОВ НАГОРЬЕ, вулканическое нагорье в Вост. Африке, на С. Танзании, в области окончания Восточной (Кенийской) рифтовой зоны Вост. Африки, между озёрами Натрон на С.-В., Маньяра на К).-В. и Эяси на Ю.-З. Образовано 8 потухшими вулканич. конусами и кратерами (кальдерами) обрушения, поднимающимися над общим лавовым цоколем. Высшая точка - г. Лулма-ласин (3648 м). Отличит, черта морфоло-гич. облика нагорья - огромные размеры кратеров (кальдер), придающие местности исключит, своеобразие (ландшафт лунных цирков). Крупнейшая кальдера Нгоронгоро достигает 22 км в поперечнике; дно её частично занято озером. В растительности преобладают саванны. В кальдере Нгоронгоро - заповедник (нац. парк) с богатой фауной крупных млекопитающих. Близ Г. к. н., западнее Нгоронгоро, - ущелье Олдовай, получившее известность благодаря находкам остатков доисторич. человека.

ГИГАНТЫ (Gigantes), в древнегреческой мифологии чудовищные великаны, рождённые богиней земли Геей от капель крови бога неба Урана. Гордясь своей силой, Г. восстали против олимпийских богов. Только с помощью киклопов, выковавших перуны (молнии) для Зевса, и Геракла с его не знающими промаха стрелами олимпийцам удалось одержать победу над Г. Битва богов с Г. (ги-гантомахия) неоднократно служила темой для античного изобразит, иск-ва; наиболее яркий памятник - знаменитый фриз алтаря Зевса в г. Пергаме (находится в Античном собрании, Берлин).

ГИГАНТЫ, звёзды-гиганты, звёзды больших размеров (100-1000 радиусов Солнца) и больших светимостей (100-1000 единиц светимости Солнца), образующие на диаграмме состояния (Герцшпрунга - Ресселла диаграмме) ветвь гигантов, положение к-рой различно для звёзд плоской и сферич. составляющей Галактики (в основном из-за различия в массах). Г. имеют малые средние плотности (10~3-10~7 г/см3) из-за протяжённых разреженных оболочек. Г. являются, по-видимому, обычными звёздами главной последовательности на поздних стадиях развития (стадия горения гелия). У нек-рых Г. наблюдается корпускулярная неустойчивость (истечение вещества с поверхности).

ГИГИЕНА (от греч. hygieinos - здоровый), наука о здоровье, отрасль медицины, изучающая влияние разнообразных факторов внешней среды (природных и бытовых условий, обществ.-производств, отношений) на здоровье человека, его работоспособность и продолжительность жизни.

Г. тесно связана со всеми мед. науками, а также биологией, физикой, химией и социально-экономич. науками. В задачи Г. входит науч. разработка основ предупредительного и текущего санитарного надзора, обоснование сан. мероприятий по оздоровлению населённых мест, условий труда и отдыха человека, охрана здоровья детей и подростков, участие в разработке санитарного законодательства, сан. экспертиза качества пищевых продуктов и предметов бытового обихода. Одна из важнейших задач совр. Г.- разработка гигиенич. нормативов для воздуха населённых мест и пром. предприятий, воды, продуктов питания, материалов, из к-рых изготовляют одежду и обувь с целью создания наиболее благоприятных условий для сохранения здоровья и предупреждения заболеваний, обеспечения высокой работоспособности и увеличения продолжительности жизни. Практич. область применения Г. составляет особый раздел - санитарию.

В гигиенич. исследованиях применяют методы физико-химич. изучения внешней среды (воздуха, воды, почвы, пищевых продуктов, строит, материалов, предметов одежды и обуви), бактериологич., биохим. и клинич., демографич. исследования с использованием методов сан. статистики.

Г.- одна из наиболее древних наук. Элементы санитарных правил можно обнаружить в ист. документах древних рабовладельч. гос-в. Известны сан. предписания в своде законов Др. Индии; в них указывалось на необходимость смены белья и одежды, ухода за кожей и зубами, рекомендовалась растительная пища и запрещались излишества в еде. В Др. Египте за 1500 лет до н. э. осуществлялись сан. мероприятия по оздоровлению населённых мест. В иудейском Моисеевом законодательстве были регламентированы гигиенич. правила всех сторон частного и обществ, быта древних евреев. На территории др. Хорезма имелись крупные, благоустроенные в сан. отношении города. В Др. Риме существовали водопровод, канализация, знаменитые римские термы (бани-купальни). В Новгороде обнаружены остатки гор. водопровода (11 в.), построенного из деревянных труб. Водопроводы были в Соловецком монастыре, Троице-Серги-евой лавре (16 в.), Киево-Печерской лавре (17 в.). В Москве самотёчный водопровод из свинцовых труб был построен в 1631. Торг, бани (т. е. бани для общего пользования) устраивались во мн. рус. городах. В Домострое (16 в.) говорилось о хранении готовой пищи, мытье посуды, стирке и смене белья.

В 16-17 вв. появились лечебники, содержащие гигиенич. советы. В 1700 вышел трактат итал. учёного Б. Рамац-цини Рассуждение о болезнях ремесленников - первый научный труд по Г. труда. В классич. произведении немецкого учёного И. П. Франка Система медицинской полиции (1779-1827) говорилось о социальном значении здоровья. В 1797 появилась Макробиотика (искусство продления жизни) нем. врача К. В. Гуфеланда.

В России в 18-19 вв. вопросы Г. нашли отражение в трудах М. В. Ломоносова, а также врачей С. Г. Зыбелина, Д. С. Самойловича, М. Я. Мудрова. В сочинении М. В. Ломоносова Первые основания металлургии или рудных дел (1763) дано много указаний, направленных на сохранение здоровья рудокопов, сформулирована теория движения воздуха в шахтах, к-рая легла в основу расчёта естеств. вентиляции.

К сер. 19 в. главное внимание гигиенистов было направлено на обществ, здравоохранение. Со 2-й пол. 19 в., в связи с успехами естествознания и медицины, значит, развитие получили в Г. экспериментальные методы исследования. Экспериментальное направление в Г. связано с трудами нем. гигиениста М. Петтенкофера. Он создал нем. школу гигиенистов, из к-рой вышли такие учёные, как М. Рубнер, К. Флюгге, В. Прау-сниц и др. В Англии новое направление в развитии Г. нашло отражение в трудах Э. Паркса, во Франции - 3. Флё-ри, А. Пруста, А. Бушарда. Развитие экспериментальной Г. в России связано с именами А. П. Доброславина и Ф. Ф. Эрисмана, заложивших основы развития в России общей, жилищной и школьной Г., гигиены труда и питания. Развиваясь столь же интенсивно, как и в зап.-европ. странах, гигиенич. наука в России имела свои особенности. Рус. гигиенисты 19 в. широко применяли са-нитарно-статистич. методы исследования. Эрисман и московские земские сан. врачи Е. А. Осипов, П. И. Куркин, С. М. Богословский создали рус. школу изучения физич. состояния и заболеваемости на основе учёта и гигиенич. оценки демографич. данных (рождаемость, смертность и естеств. прирост населения, заболеваемость и физич. развитие, данные сан.-топографич. характера). В 19 в. выдвинулась плеяда видных санитарных деятелей: И. И. Моллесон, Е. М. Дементьев, Д. Н. Жбанков, А. В. Погожев, П. А. Песков, Н. И. Тезяков и др. Важную роль в развитии Г. сыграли Г. В. Хло-пин, уделявший много внимания методике гигиенических исследований, и А. Н. Сысин, разрабатывавший многие вопросы общей и коммунальной гигиены. В 18-20 вв. большинство городов Европы и Азии находилось в антисанитарном состоянии. В России положение изменилось коренным образом только после Великой Окт. социалистич. революции.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал