![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теоретическая часть. Цель и задачи лабораторной работыСтр 1 из 3Следующая ⇒
Цель и задачи лабораторной работы Целью лабораторной работы является исследование процессов дискретизации и восстановления непрерывных сигналов. Задачами лабораторной работы является закрепление теоретического материала о понятиях дискретизации непрерывных сигналов, интерполяции, теоремы Котельникова и построение временных диаграмм сигналов различной формы. Теоретическая часть Все непрерывные сигналы, которые нужно передавать, отображают реальные физические процессы и представляют собой функции с финитным (строго ограниченным по ширине) или близким к этому спектром (основная часть спектра сосредоточена в ограниченной полосе частот). При дискретизации непрерывных сигналов во времени используют теоретическое положение, сформулированное В.А.Котельниковым в теореме отсчетов. Любой непрерывный сигнал может быть представлен отдельными дискретными отсчетами. Смысл теоремы Котельникова состоит в том, что если требуется передавать сигнал, описываемый функцией с ограниченным спектром, то достаточно передавать его отдельные мгновенные значения, взятые через равные интервалы времени: где Fв (Fm) – верхняя частота спектра (максимальная частота спектра);
Это позволяет представить любой непрерывный сигнал x (t) в виде ряда Котельникова: где Отсчет – короткий импульс, длительностью Процесс замены непрерывного сигнала на дискретные отсчеты называется дискретизацией. Величина, обратная интервалу дискретизации Если спектр сигнала находится в полосе частот ∆ F = fв - fн, не включая нулевых частот, то правило дискретизации Котельникова выглядит так: fд ≥ 2∆ F. Первая форма записи теоремы Котельникова [3]. Существо теоремы следующее. Функцию S(t) с финитным (ограниченным) спектром можно точно восстановить (интерполировать) по ее отсчетам Где в качестве интерполирующих функций Эти функции представляют собой весовую или импульсную характеристику идеального ФНЧ. Передаточная функция идеального ФНЧ (рисунок 3.2): Рисунок 4.1 – Передаточная функция идеального ФНЧ Процесс восстановления сигнала рядом Котельникова отражен на рисунке 4.2 Функция Если допустить, что сигнал S(t) имеет конечную длительность Т и ширину спектра F, то для его представления потребуется Рисунок 4.2 – Процесс восстановления рядом Котельникова Процесс дискретизации непрерывной функции Рисунок 4.3 - Процесс дискретизации непрерывной функции и ее восстановления Таким образом, по дискретной последовательности отсчетов функции Это говорит о том, что не существует принципиальных различий между непрерывными и дискретными сигналами. Из любого непрерывного сигнала с ограниченным спектром можно взять его отсчеты в дискретные моменты времени, а затем по этим отсчетам абсолютно точно восстановить исходный непрерывный сигнал. При этом, для абсолютно точного восстановления сигнала, не нужно брать отсчеты бесконечно часто, достаточно, чтобы соблюдалось условие
|