Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Еще об основаниях
Число пятнадцать по основанию десять представляется как 15, по основанию девять — как 16(9), no основанию восемь — как 17(8), а по основанию семь — как 21(7). В системе счисления по основанию 7 нет цифры 8, поэтому для представления числа пятнадцать нужно использовать две семерки и одну единицу. Как же прийти к какому-нибудь общему принципу? Чтобы преобразовать десятичное число в число с основанием 7, вспомните о значении каждой порядковой позиции. В семеричной системе счисления переход к следующему порядку будет происходить на значениях, соответствующих десятичным числам: единица, семь, сорок девять, триста сорок три и т.д. Откуда взялись эти числа? Так ведь это же степени числа семь: 7^0, 7^0, 7^2, 7^3 и т.д. Построим следующую таблицу: 4 3 2 1 7^3 7^2 7^1 7^0 343 49 7 1 В первой строке представлен порядок числа. Во второй — степень числа семь, а в третьей — десятичное представление соответствующей степени числа семь. Чтобы получить представление некоторого десятичного числа в системе счисления с основанием 7, выполните следующую процедуру. Проанализируйте, к числам какого порядка может относиться это значение. Возьмем, к примеру, число 200. Вы уже знаете, что числа четвертого порядка в семеричной системе счисления начинаются с 343, а потому это может быть только число третьего порядка. Чтобы узнать, сколько раз число 49 (граничное значение третьего порядка) " поместится" в нашем числе, разделите его на 49. В ответе получается число 4, поэтому поставьте 4 в третью позицию и рассмотрите остаток, который в данном случае тоже равен 4. Поскольку в этом остатке не укладывается ни одной целой семерки, то во второй разряд (второй порядок) помещаем цифру 0. Нетрудно догадаться, что в остатке 4 содержится 4 единицы, поэтому и ставим цифру 4 в первую позицию (порядок единиц). В итоге получаем число 404(7). Для преобразования числа 968 в систему счисления по основанию 6 используем следующую таблицу: 5 4 3 2 1 6^4 6^3 6^2 6^1 6^0 1296 216 36 6 1 В числе 968 число 1296 (граничное значение пятого порядка) не умещается ни разу, поэтому мы имеем дело с числом четвертого порядка. При делении числа 968 на число 216 (граничное значение четвертого порядка) получается число 4 с остатком, равным 104. В четвертую позицию ставим цифру 4. Делим остаток 104 на число 36 (граничное значение третьего порядка). Получаем в результате деления число 2 и остаток 32. Поэтому третья позиция будет содержать цифру 2. При делении остатка 32 на число 6 (граничное значение второго порядка) получаем 5 и остаток 2. Итак, в ответе имеем число 4252(6), что наглядно показано в следующей таблице: 5 4 3 2 1 6^4 6^3 6^2 6^1 6^0 1296 216 36 6 1 0 4 2 5 2 Для обратного преобразования, т.е. из системы счисления с недесятичным основанием (например, с основанием 6) в десятичную систему, достаточно умножить каждую цифру числа на граничное значение соответствующего порядка, а затем сложить полученные произведения: 4 * 216 864 2 * 36 = 72 5 * 6 = 30 2 * 1 = 2 sum = 968
|