Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
По формуле Тейлора
Применение формулы Тейлора для разложения функций в степенной ряд широко используется и имеет огромное значение при проведении различных математических расчетов. Непосредственное вычисление интегралов некоторых функций может быть сопряжено со значительными трудностями, а замена функции степенным рядом позволяет значительно упростить задачу. Нахождение значений тригонометрических, обратных тригонометрических, логарифмических функций также может быть сведено к нахождению значений соответствующих многочленов. Если при разложении в ряд взять достаточное количество слагаемых, то значение функции может быть найдено с любой наперед заданной точностью. Практически можно сказать, что для нахождения значения любой функции с разумной степенью точности (предполагается, что точность, превышающая 10 – 20 знаков после десятичной точки, необходима очень редко) достаточно 4-10 членов разложения в ряд. Применение принципа разложения в ряд позволяет производить вычисления на ЭВМ в режиме реального времени, что немаловажно при решении конкретных технических задач.
Функция .
Находим: , , , , …………………… , , Тогда: . Пример. Найдем значение числа . В полученной выше формуле положим . Для 8 членов разложения: e = 2, 71827876984127003. Для 10 членов разложения: e = 2, 71828180114638451. Для 100 членов разложения: e = 2, 71828182845904553.
На графике показаны значения числа е с точностью в зависимости от числа членов разложения в ряд Тейлора. Следовательно, для достижения точности, достаточной для решения большинства практических задач, можно ограничиться 6-7 – ю членами ряда.
Функция Получаем ; ; ; ; ; ; ; ; ………………………………………… ; ; ; ; Следовательно
Функция
Для функции , применив аналогичные преобразования, получим:
Функция ( - действительное число) ………………………………………………….. . Тогда: ; . Если в полученной формуле принять , где - натуральное число и то , тогда . Получили формулу, известную как бином Ньютона. Пример. Применить полученную формулу для нахождения синуса любого угла с любой степенью точности. На приведенных ниже графиках представлено сравнение точного значения функции и значения разложения в ряд Тейлора при различном количестве членов разложения.
|