Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Асимптоты функции






Определение асимптот функции не такое и трудное занятие если Вы хорошо знаете ряд правил и имеете добрые знания вычисления пределов. Если же не умеете находить пределы то наверстывать придется много, но научиться можно.

Прямая называется асимптотой кривой если точка кривой неограниченно приближается к ней при росте абсциссы или ординаты. Асимптоты разделяют на вертикальные, наклонные (горизонтальные) асимптоты.

ВЕРТИКАЛЬНЫЕ АСИМПТОТЫ

График функции при аргументе котрый стремится к точке имеет вертикальную асимптоту, если предел функции в ней бесконечен

Кроме этого точка является точкой разрыва II рода, а уравнение вертикальной асимптоты имеет вид

НАКЛОННЫЕ АСИМПТОТЫ

Уравнение наклонной асимптоты имеет вид

где - пределы, которые вычисляются по правилу

Если оба пределы существуют и конечны то функция имеет наклонную асимптоту, иначе - нет. Следует отдельно рассматривать случаи, когда аргумент стремится к бесконечности () и минус бесконечности ().

ГОРИЗОНТАЛЬНЫЕ АСИМПТОТЫ

Кривая имеет горизонтальную асимптоту только в том случае, когда существует конечный предел функции при и , и эта граница равна

или

Нахождение пределов в некоторых случаях упрощается, если применять правило Лопиталя.

19.. Понятие дифференциала

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.

Пусть функция у=ƒ (х) имеет в точке х отличную от нуля производную.

Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/Dх=ƒ '(х)+α, где α → 0 при ∆ х→ 0, или ∆ у=ƒ '(х)•∆ х+α •∆ х.

Таким образом, приращение функции ∆ у представляет собой сумму двух слагаемых ƒ '(х)•∆ х и а•∆ х, являющихся бесконечно малыми при ∆ x→ 0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆ х, так как а второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆ х:

Поэтому первое слагаемое ƒ '(х)· ∆ х называют главной частью приращения функции ∆ у.

Дифференциалом функции у=ƒ (х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ (х)):

dy=ƒ '(х)•∆ х. (24.1)

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у'=х'=1, то, согласно формуле (24.1), имеем dy=dx=∆ x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆ х.

Поэтому формулу (24.1) можно записать так:

dy=ƒ '(х)dх, (24.2)

иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.

Из формулы (24.2) следует равенство dy/dx=ƒ '(х). Теперь обозначение

производной dy/dx можно рассматривать как отношение дифференциалов dy и dх


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал