![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Первообразная и неопределенный интеграл, их свойства.
Определение первообразной. Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство Определение неопределенного интеграла. Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается Выражение Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C. На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).
Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения. Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств: Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах. Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь: -первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно; -второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов. Таблица интегралов 22. Для вычисления данного интеграла мы должны, если это возможно, пользуясь теми или другими способами, привести его к табличному интегралу и таким образом найти искомый результат. В нашем курсе мы рассмотрим лишь некоторые, наиболее часто встречающиеся приемы интегрирования и укажем их применение к простейшим примерам. Наиболее важными методами интегрирования являются:
|