![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теорема Остроградського-Гауса та її застосування
Напруженість електростатичного поля зручно представити через густину силових ліній, що пронизують елементарну ділянку поверхні, розміщену перпендикулярно до цих ліній (рис.2.6). Рис. 6. З останнього рівняння випливає:
Величину вектора dФ Еназивають потоком вектора напруженості через елементарну площадку dS. З рівняння (2.8) випливає, що потік вектора напруженості Ф Е через поверхню S дорівнює:
Ф Е = Згідно з теоремою Остроградського-Гауса, потік вектора напруженості електростатичного поля
(2.20) Теорема Остроградського – Гауса використовується для розрахунку електростатичних полів, створених зарядженими тілами найрізноманітніших конфігурацій.
Розглянемо для прикладу, розрахунок електростатичного поля, створеного нескінченно довгим, рівномірно зарядженим циліндром з радіусом R і з лінійною густиною електричних зарядів В ролі замкненої поверхні, що оточує цей циліндр, візьмемо коаксіальний циліндр радіусом r і висотою h. Повний потік вектора напруженості буде дорівнювати потоку тільки через бічну поверхню замкнутого циліндра, оскільки силові лінії електричного поля не перетинають площі основ цього циліндра (рис. 2.8).
Враховуючи, що в нашому випадку En = E а
Різниця потенціалів між двома точками, які знаходяться в одній площині на відстанях r1 i r2 від осі зарядженого циліндра, з (2.11):
|