Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Общие сведения и особенности
Основные понятия и определения Производственным процессом в машиностроении называют совокупность действий, необходимых для выпуска готовых изделий. В основу производственного процесса положен технологический процесс изготовления изделий, во время которого происходит изменение качественного состояния объекта производства. Для обеспечения бесперебойного выполнения технологического процесса изготовления изделия необходимы еще и вспомогательные процессы Основные этапы производственного процесса: · получение и складирование заготовок; · доставка заготовок к рабочим позициям; · различные виды механической обработки; · перемещение полуфабрикатов между рабочими позициями; · контроль качества; · хранение на складах; · сборка изделий; · испытание, регулировка; · окраска, отделка, упаковка и отправка.
Различные этапы производственного процесса на машиностроительном заводе могут выполняться в отделочных цехах или в одном цехе. В соответствии с ГОСТ 26229 гибкая производственная система (ГПС) (гибкое автоматизированное производство - ГАП) - совокупность в разных сочетаниях оборудования с ЧПУ, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервала времени, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик. Периоды развития ГАП: · 1 период - 60-70 годы - разработка и проверка базисных принципов создания; · 2 период - 80 годы - разработка и создание элементной техники и технологии; · 3 период - 90 годы - разработка и создание системы комплексов ГП. Наибольшее распространение получили ГАП в механообработке. Здесь сформировались типичные структуры - модули, объединяемые в линии или участки с помощью транспортно-складских систем. Состав модуля включает: · обрабатывающий центр; · накопитель палет или кассет и средства ЧПУ.
Сравнительные данные по использованию ГАП в различных технологиях: · металлообработка резанием - 50 %; · металлообработка формовкой - 21 %; · сварка - 12 %; · сборка - 5 %; · остальные технологии - 12 %.
Сложнее всего происходит внедрение ГАП в сборочные производство, это связано: · со сложностью и разнообразием объектов сборки и необходимой для этой сборки оснастки; · коротким циклом операций сборки; · нежесткостью или упругостью деталей; · необходимостью в настройке, подгонке и учете малых допусков в сочленении деталей.
В сборочных ГАП центральным компонентом являются роботы с развитой сенсорикой и высоким уровнем машинного интеллекта, что влияет на увеличение уровня затрат при создании ГАП сборки. Поскольку роботы с интеллектуальными средствами управления еще не получили широкого распространения, то приходится резко повышать затраты на периферийное оборудование и оснастку, создавая условия для применения более простых роботов. При этом стоимость оснастки и периферии составляет до 70 % от общей стоимости сборочного модуля. Далее будут более подробно рассмотрены экономические и социальные аспекты использования роботов. Однако, ГАП не является эффективным для любых типов производств.[4] В настоящее время роботы в основном применяются при операциях транспортирования, сборки, обслуживания обрабатывающего оборудования, сварки и контроля. С точки зрения вычислительной нагрузки на управляющую ЭВМ производственные операции можно подразделить на два вида: · информационно простые операции, к ним относятся операции переноса большого числа предметов или тяжелых предметов; · информационно сложные операции (сборки и контроля).
Основным направлением совершенствования роботов является развитие применения микро-ЭВМ с 8, 16 и 32-разрядными микропроцессорами, развитыми операционными системами и языками программирования высокого уровня. Перспективным направлением является использование аналоговых микропроцессоров, т.е. больших интегральных схем, где в одном кристалле реализованы как цифровые элементы – микропроцессор, так и цифро-аналоговые и аналого-цифровые преобразователи, схемы управления периферийными устройствами. Для реализации высоконадежных систем управления роботами все больше находят применение адаптивные микропроцессоры с БИС, т.к. в этих устройствах имеются резервные узлы, средства диагностики отказов и самовосстановления, реализующие адаптивные внутренние связи, способствующие увеличению надежности роботоориентированных вычислительных устройств до показателей, отвечающих производственным требованиям.
|