![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Получение. Большинство реакций получения карбонильных соединений рассмотрены ранее при изучении химических свойств алкенов
Большинство реакций получения карбонильных соединений рассмотрены ранее при изучении химических свойств алкенов, алкинов, галогенпроизводных углеводородов, спиртов. Примеры: 1. окисление алкенов(озонолиз)
2. окисление первичных и вторичных спиртов
3. гидролиз геминальных дигалогенпроизводных углеводородов
Из дигалогенпроизводных с атомами галогена при первичном атоме углерода образуются альдегиды, при вторичном - кетоны.
4. гидратация алкинов
5. термическое разложение кальциевых и бариевых солей карбоновых кислот
6. дегидрирование спиртов
7. оксосинтез. В промышленности значительное количество альдегидов получают присоединением оксида углерода (II) и водорода к углеводородам ряда этилена. Например, из пропилена может быть получена смесь масляного и изомасляного альдегидов СН3-СН=СН2 + СО + Н2 → СН3-СН2-СН2-СНО + (СН3)2СН-СНО
Изомерия. Для карбонильных соединений характерна структурная изомерия: различное строение углеродной цепи и различное расположение карбонильной группы в цепи. В связи с этим кетоны и альдегиды с одинаковым числом углеродных атомов являются структурными изомерами. Для карбонильных соединений характерна кето-енольная таутомерия, обусловленная существованием двух изомерных форм, находящихся в растворе в динамическом равновесии. Например, для ацетона СН3-С-СН3 СН2 =С-СН3 || |
кето-форма енол
Содержание в смеси кето-формы, как более стабильной формы, практически всегда больше енольной формы.
Строение. Физические свойства. Атомы углерода и кислорода карбонильной группы находятся в sр2-гибридизации. Двойная связь С=О, подобно связи С=С, представляет собой комбинацию σ -(sр2-sр2- перекрывание) и π -(р-р-перекрывание) связей. При этом связь в карбонильной группе, в отличие от двойной связи в алкенах, характеризуется высокими полярностью и поляризуемостью
R → НСδ + = Оδ -, что является причиной повышенной реакционной способности альдегидов и кетонов, склонности к гетеролитическому расщеплению связей. Альдегиды и кетоны - полярные соединения. Ассоциация молекул происходит только за счет диполь-дипольного взаимодействия, поскольку образование межмолекулярных водородных связей для карбонильных соединений не характерно. Поэтому, в отличие от спиртов, карбонильные соединения имеют более низкие значения температур кипения и плавления, они менее растворимы в воде. Химические свойства. Химические свойства карбонильных соединений исключительно разнообразны. Многочисленные реакции, в которые они способны вступать, позволяют получать вещества многих классов. Наиболее характерные реакции карбонильных соединений - реакции нуклеофильного присоединения (АN), окисления-восстановления. а) реакции нуклеофильного присоединения (АN) Реакционная активность карбонильных соединений в реакциях этого типа зависит от величины эффективного положительного заряда на карбонильном атоме углерода. Чем больше величина заряда, тем выше реакционная активность соединений в реакциях АN -типа. Изменение активности в ряду метаналь > предельные альдегиды > предельные кетоны > ароматические альдегиды > ароматические кетоны обусловлено увеличением электронодонорного характера радикалов, связанных с карбонильной группой. Реакции нуклеофильного присоединения протекают в две стадии. Процесс начинается с атаки нуклеофила карбонильного атома углерода. Образующийся на первой стадии тетраэдрический интермедиат присоединяет электрофил и дает продукт присоединения:
Примеры реакций. Присоединение спиртов. Присоединение одной молекулы спирта сопровождается образованием так называемых полуацеталей - неуствойчивых простых эфиров, которые при дальнейшем взаимодействии со спиртом (при нагревании и присутствии катализатора, например HСl) переходят в ацетали. Ацетали устойчивы и могут быть выделены в чистом виде. Это обычно приятно пахнущие, труднорастворимые в воде жидкости. Ацетали в присутствии кислот гидролизуются, образуя исходный спирт и альдегид; в щелочной среде гидролиз не происходит.
Присоединение синильной кислоты. В реакции образуются α -гидроксинитрилы (циангидрины), которые широко используются для получения аминов, α -гидроксикарбоновых кислот, причем получаемые соединения содержат на один атом углерода больше по сравнению с исходными карбонильными соединениями. Плоды некоторых растений (например, горький миндаль) содержат циангидрины. Присоединение магнийорганических соединений. Реакция лежит в основе получения спиртов разной природы и с большим числом атомов углерода в их составе: В реакциях с метаналем образуются первичные спирты, с альдегидами - вторичные спирты, с кетонами - третичные спирты. Аналогично протекают реакции карбонильных соединений с ацетиленом и ацетиленидами с образованием непредельных диолов. Взаимодействие с гидросульфитом натрия используют для выделения карбонильных соединений из реакционной смеси: Реакция характерна для альдегидов и тех кетонов, у которых при карбонильной группе находится метильный радикал. В кислой и щелочной средах нерастворимые в воде гидросульфитные соединения разлагаются с образованием исходных карбонильных соединений. Взаимодействие с соединениями типа NH2-X (Х - Н, -NН2 , -ОН и другие). Особенность реакций с указанными нуклеофилами - продукты присоединения легко отщепляют молекулу воды с образованием более устойчивых соединений:
Взаимодействие с галогенидами фосфора. В результате этой реакции образуются гем- дигалогенпроизводные, при гидролизе которых вновь образуются карбонильные соединения:
б) окисление - восстановление карбонильных соединений Альдегиды в этих реакциях проявляют большую реакционную способность, чем кетоны. В реакциях окисления окисляется атом водорода при углеродном атоме карбонильной группы. Примеры реакций. Окисление альдегидов слабыми окислителями сопровождается образованием карбоновых кислот с таким же, как в исходном альдегиде, числом углеродных атомов: R-СН=О + Аg(NН3)2ОН → R-СООН + Аg + NН4ОН + NН3 (реакция «серебряного зеркала») R-СН=О + Cu (ОН)2 → R-СООН + Cu2О + Н2О Обе реакции протекают при нагревании, являются качественными реакциями на альдегидную группу. Кетоны в этих условиях не окисляются, окисление с разрывом углерод-углеродных связей протекает довольно в жестких условиях с образованием соединений (кетоны, карбоновые кислоты), содержащих по сравнению с исходным, меньшее число атомов углерода. Восстановление карбонильных соединений в зависимости от природа восстановителя и условий реакций происходит до спиртов и углеводородов. При восстановлении альдегидов образуются первичные спирты, кетонов - вторичные спирты. Под действием концентрированной щелочи альдегиды, у которых отсутствует атом водорода у α -углеродного атома, подвергаются окислительно-восстановительному превращению, приводящему к образованию спирта и карбоновой кислоты (реакция Канниццаро): Н2С=О + NаОН → Н3 С-ОН + НСООН
в) реакции альдольно-кротоновой конденсации Для альдегидов и кетонов очень важными являются реакции конденсации, в частности альдольной и кротоновой конденсаций. Так, альдольная конденсация (А.П. Бородин) идет в мягких условиях (в щелочной или кислой среде). Осуществляется по типу нуклеофильного присоединения, при этом одна молекула карбонильного соединения выступает в качестве субстрата - карбонильной компоненты, другая - в качестве реагента - метиленовой компоненты, имеющей подвижный атом водород в α -положении радикала. В результате возникает новая С-С-связь и образуется вещество, содержащее одновременно альдегидную (или кетонную) и спиртовую группы - альдоль. Процессы альдольной конденсации имеют большое значение для синтетического получения углеводов. И в природе сложный процесс фотосинтеза углеводов в растениях проходит через стадию альдольной конденсации. Кротоновая конденсация идет в более жестких условиях как реакция замещения атома кислорода карбонильной группы одной молекулы и двух атомов водорода в α -положении другой молекулы альдегида или кетона.
альдоль кротон Альдегиды вступают в реакции конденсации и с соединениями других классов, например с фенолами, ароматическими аминами и т.д. На этом основано, в частности, очень важное использование их в промышленности пластических масс.
г) полимеризация альдегидов Альдегиды, особенно их низшие представители, склонны к полимеризации. Реакция идет с разрывом π -связи альдегидных групп, причем атомы карбонильного кислорода одной молекулы альдегида соединяются с атомами карбонильного углерода другой молекулы. Так, например формальдегид полимеризуется по схеме: nCH2=O → (-CH2-O-)n формальдегид полимер (параформ) При длительном стоянии водных растворов формальдегида, особенно при низких температурах, а также при упаривании в них образуется белый осадок – параформ (или параформальдегид) с величиной n от 10 до 50. При нагревании до 140-160оС параформальдегид деполимеризуется и превращается в газообразный формальдегид, процесс ускоряется в присутствии кислот. Альдегиды в реакциях полимеризации могут образовать циклические полимеры. Так, из уксусного альдегида образуется жидкий циклический тример (полимер, образованный тремя молекулами мономера), называемый паральдегидом:
этаналь паральдегид Муравьиный альдегид образует триоксиметилен или тетраоксиметилен:
Описанные процессы полимеризации альдегидов обратимы: при нагревании полимеров, особенно в присутствии следов минеральных кислот, они деполимеризуются и распадаются на молекулы исходного альдегида. Для ароматических карбонильных соединений характерны химические реакции как по карбонильной группе, так и по бензольному кольцу (SЕ). При этом в результате взаимного влияния данных групп реакционная активность карбонильных соединений несколько отлична от алифатических альдегидов и кетонов (понижается реакционная активность в реакциях АN-типа, окисления). В реакциях электрофильного замещения карбонильная группа является заместителем 2 рода (электроноакцепторная группа) и ориентирует входящий электрофил в мета -положение. Применение. Метаналь находит применение в органическом синтезе, производстве синтетических смол (фенолформальдегидная смола), лекарственных препаратов, красителей, дезинфицирующих средств, пласмасс. Этаналь широко применяется в промышленности, органическом синтезе. Ацетон - в производстве взрывчатых веществ, в органическом синтезе широкого круга соединений, в парфюмерии, является прекрасным растворителем самых разнообразных соединений. Бензальдегид применяют в пищевой промышленности, парфюмерии, в органическом синтезе.
|