Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Касательная плоскость и нормаль к поверхности.






 

1. Уравнение касательной плоскости и нормали для случая явного задания поверхности.

Определение. Касательной плоскостью к поверхности в точке (точка касания) называется плоскость, в которой лежат все касательные в точке к различным кривым, проведенным на поверхности через эту точку.

Определение. Нормалью к поверхности называется перпендикуляр к касательной плоскости в точке касания.

Если – дифференцируемая функция, то уравнение касательной плоскости в точке поверхности имеет вид

 

(5)

Уравнения нормали имеют вид

. (6)

 

Пример 2. Найти уравнения касательной плоскости и нормали к поверхности в точке .

 

2. Уравнение касательной плоскости и нормали для случая неявного задания поверхности.

Пусть уравнение гладкой поверхности задано в неявной форме и . Тогда соответствующие уравнения будут иметь такой вид:

 

– уравнение касательной плоскости и

 

.

 

– уравнение нормали к поверхности.

 

Пример 3. Написать уравнение касательной плоскости и нормали к поверхности в точке, для которой , .

Решение. Найдем аппликату точки касания, подставив и в уравнение поверхности: . Таким образом, точка касания .

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал