Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методика решения задач на основе принципа оптимальности Беллмана






 

Принцип оптимальности впервые сформулирован и доказан Беллманом: утверждается, что оптимальная стратегия, начиная с любого этапа, зависит не от предыдущей стратегии, а лишь от состояния системы на данном этапе и последующей стратегии, т. е. от решений на последующих этапах.

Для знакомства с методиками приведём примеры решения задач.

Рассмотрим пример геометрической интерпретации (рис.10.1) метода.

 

Рис. 10.1. Геометрическая интерпретация задачи

 

Смысл её состоит в следующем:

· Вертикальным линиям соответствуют моменты времени, в которые рассматривают исследуемую задачу.

· В начальный момент t0 = 0 процесс (система) находится в одном из возможных начальных состояний, множеству которых соответствует множество точек Аi.Начальное состояние может быть задано либо областью возможных состояний, либо одним конкретным значением, в нашем случае четырьмя А1 А2 А3 и А4. Будем также считать, для простоты, что в каждый момент времени система находится так же в одном из четырех возможных состояний, которые показаны точками на соответствующих вертикалях.

· Конечное состояние системы — одна из четырех точек В1 В2 В3 и В4

 

Система переводится из начального состояния в следующее с помощью функции перехода, которую еще называют управлением системы на данном этапе. Для каждого, из возможных состояний, существует своя функция перехода (или некоторое множество их), которая переводит систему в некоторое множество состояний в следующий момент времени.

Эта функция — количественная характеристика перехода в следующее состояние в зависимости от предыдущего — выражает либо выигрыш, либо затраты. Поскольку значение функции перехода зависит от предыдущего х(i) и от последующего х (i + 1) состояний системы, ее можно записать в общем случае так:

 

Каждая допустимая стратегия выражается ломаной линией, соединяющей вертикаль t= 0 с вертикалью tn = Т. Состоит она из набора управлений на каждом этапе, т. е. ей можно сопоставить число:

 

Оптимальной стратегии соответствует ломаная с наименьшим значением F.

Следовательно, исходную задачу можно сформулировать в следующем виде: требуется из всех допустимых ломаных, соединяющих вертикаль t0=0 c вертикалью tn = T выбрать такую, которой соответствует наименьшее значение F.

Решают задачу в таком порядке:

Для всех возможных состояний системы в начале последнего этапа х (n– 1) определяют оптимальное управление — выбирают функцию перехода в одно из конечных состояний с минимальным значением. Переходы, соответствующие минимальному значению Qn-1 для каждого состояния (n - 1), показаны на рис. 10.1 жирной линией. Таким образом, в какой бы точке не оказалась система в начале последнего этапа, всегда можно предложить оптимальную стратегию для перевода ее в конечное состояние, получить ряд условно-оптимальных решений. Условие оптимальности каждого такого решения - состояние системы в начале рассматриваемого периода.

Теперь для каждого состояния системы в начале предпоследнего этапа Х(n-2) можно определить условно-оптимальные стратегии для перевода в одно из конечных состояний уже по общему минимуму функций перехода на двух последних этапах: min

При этом значения Qn-1 уже известны в результате предыдущих вычислений. Затем аналогично определяют условно-оптимальные стратегии на трех последних этапах по условию min(Qn-2 + Qn-1), причем Qn-1 уже известна. Расчеты продолжают до тех пор, пока не будет пройден весь процесс в обратном направлении.

Каждая из полученных ломаных (жирная линия), соответствует условно-оптимальной стратегии для всего процесса. Поскольку множеству начальных состояний системы соответствует множество точек на вертикали, то каждой условно-оптимальной стратегии соответствует свое начальное состояние системы (точка, из которой она выходит). Таким образом, условно-оптимальная стратегия будет оптимальной, при условии, что начальное состояние системы находится в соответствующей точке. Каждая условно-оптимальная стратегия оценивается значением функции F:

 

По нему можно выбрать начальное состояние системы и в зависимости от него окончательно определить оптимальную стратегию, т. е., пройдя процесс уже от начала к концу, установить на каждом этапе оптимальные решения.

Принцип оптимальности Беллмана в этой интерпретации задач и динамического программирования означает следующее: оптимальный путь из любой точки, отражающей состояние системы в какой-либо момент времени, не зависит от траектории, ведущей в эту точку. Поэтому для определения оптимального решения в целом необходимо всегда находить оптимальное продолжение процесса относительно состояния, достигнутого в результате решения на предшествующем этапе.

Контрольные вопросы

1. В каких задачах транспорта применяется динамическое программирование?

2. В чем суть динамического программирования?

3. Опишите особенности алгоритма реализации метода.

4. Что необходимо учитывать при отыскании оптимального решения с помощью рассматриваемого метода?

5. Сущность принципа оптимальности Беллмана.

6. Охарактеризуйте особенности геометрической интерпретации метода решения задач на основе принципа оптимальности Беллмана.

7. Поясните понятие «функция перехода».

 



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал