Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Количественная оценка лучистого теплообмена
Выше отмечалось, что природа лучистого теплообмена магнитоэлектрическая. Количество энергии излучения зависит от температуры излучающего тела. Каждое тело способно не только излучать, но и отражать, поглощать и пропускать через себя падающие на него тепловые лучи от другого тела. Рассмотрим лучистый теплообмен в системе Солнце — Земля. Энергия (солнечная радиация), обусловленная температурой Солнца, проходя атмосферу Земли, частично поглощается содержащимися в ней водяными парами и атмосферными газами, а частично ими и взвешенными в воздухе коллоидными частицами рассеивается. В результате указанных процессов дошедшая до Земли так называемая прямая солнечная радиация (Q п.р) как количественно, так и качественно отличается от солнечной радиации на верхней границе атмосферы. Количество солнечной энергии, поступающей на поверхность Земли, зависит от географической широты и изменяется в связи с изменением астрономических и метеорологических условий. Та часть солнечной радиации, которая рассеивается в атмосфере, также частично достигает поверхности Земли в виде так называемой рассеянной радиации (q р.р). По отношению к прямой радиации она может составлять в облачную погоду до 60 % и более. Сумму прямой и рассеянной радиации принято называть суммарной солнечной радиацией. Различают суммарную радиацию при безоблачном небе (I 0) и при наличии облаков (I 1). Количество суммарной солнечной радиации при безоблачном небе I 0=(Q п.р+ q р.р)0 находят по таблицам, или оно может быть вычислено по формулам, например по формуле М. Е. Берлянда. При наличии облаков суммарная солнечная радиация определяется по формуле: I 1 = I 0 [1 - (a 1- b 1 n 0) n 0], (3.19) где n 0 – общая облачность в долях единицы; b 1 = 0, 38; a 1 - коэффициент, зависящий от широты, определяется по таблице. Отражение лучистой энергии. Достигнув земной поверхности, солнечная радиация частично поглощается ею, повышая температуру этой поверхности, а частично отражается в атмосферу. Отражение лучистой энергии поверхностью тела может быть зеркальным, диффузным и общим. При зеркальном (направленном) отражении угол падения луча на отражающую поверхность равен углу отражения. Этот вид отражения свойствен поверхностям, неровности которых малы по сравнению с длиной волны падающей радиации. Для характеристики отражательной способности поверхности почвы, воды, снега, льда и т. д. при зеркальном отражении лучистой энергии в гидрометеорологии используют коэффициент отражения r, а при диффузном — коэффициент A — альбедо. Альбедо — это отношение интенсивности радиации, отраженной данной поверхностью, к интенсивности радиации (прямой и рассеянной), падающей на нее, в процентах или в долях единицы. В настоящее время рассчитаны таблицы значений альбедо для различных поверхностей в зависимости от географической широты ее месторасположения и высоты стояния Солнца. Зная альбедо поверхности, можно рассчитать суммарную радиацию, проникающую в среду: I = (1 - A) I 0 [1 - (a 1- b 1 n 0) n 0]. (3.20) Альбедо зависит также и от характеристики поверхности. Поглощение и пропускание лучистой энергии. Часть лучистой энергии от внешнего источника излучения проникает внутрь тела, представляющего собой прозрачную или полупрозрачную среду для тепловых лучей. В первом случае среда характеризуется коэффициентом пропускания d, а во втором — коэффициентом поглощения а. При прохождении лучистой энергии через полупрозрачную среду (вода, снег, лед и т. д.) она частично поглощается, частично рассеивается, а часть ее, в зависимости от толщины слоя среды, может пройти сквозь толщу и поглотиться подстилающей поверхностью. Поглощение, рассеивание и пропускание среды зависит от физической природы и формы тела, а также от длины волны излучения. Результаты наблюдений за проникающей радиацией, выполненных на различных водных объектах РФ, приведены на рис.3.3. Из рисунка видно, что убывание радиации с глубиной в озере Красавица и Цимлянском водохранилище происходит очень быстро. На глубине 1 м радиация составляет всего лишь сотые доли падающей на водную поверхность. В озере Севан и Черном море радиация проникает глубже, что объясняется повышенной прозрачностью этих водоемов. Лучистая энергия Солнца, проникающая во встреченную ею среду (земную поверхность), повышает ее температуру. Земная поверхность, в свою очередь, излучает теплоту. Разность между собственным излучением земной поверхности и поглощаемым ею встречным излучением атмосферы называют эффективным излучением земной поверхности — I эф. Эффективное излучение зависит от температуры излучающей поверхности и воздуха, а также от влажности и стратификации в приземном слое атмосферы. Рис. 3.3. Зависимость отношения Iz / I от глубины z для различных водоемов [8] 1 — оз. Красавица, 2 — Цимлянское водохранилище, 3 — прибрежный район Черного моря, 4 — оз. Севан.
Разность между поглощенной суммарной радиацией и эффективным излучением земной поверхности называют радиационным балансом земной поверхности и записывают в следующем виде: QR = I - I эф (3.21а) или QR = (1 - A) (Q п.р + q р.р) - I эф, (3.21в) где (Q п.р + q р.р) и I эф — суммарная солнечная радиация и эффективное излучение при облачности.
|