Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вероятностный подход к описанию погрешностей. Точечные оценки законов распределения.
Когда при проведении с одинаковой тщательностью и в одинаковых условиях повторных наблюдений одной и той же постоянной величины получаем результаты. отличающиеся друг от друга, это свидетельствует о наличии в них случайных погрешностей. Каждая такая погрешность возникает вследствие одновременного воздействия на результат наблюдения многих случайных возмущений и сама является случайной величиной. В этом случае предсказать результат отдельного наблюдения и исправить его введением поправки невозможно. Можно лишь с определенной долей уверенности утверждать, что истинное значение измеряемой величины находится в пределах разброса результатов наблюдений от л>.т до Хп.ах, где хтт. Ат< а — соответственно, нижняя и верхняя границы разброса. Однако остается неясным, какова вероятность появления того или ^иного значения погрешности, какое из множества лежащих в этой области значений величины принять за результат измерения и какими показателями охарактеризовать случайную погрешность результата. Для ответа на эти вопросы требуется принципиально иной, чем при анализе систематических погрешностей, подход. Подход этот основывается на рассмотрении результатов наблюдений, результатов измерений и случайных погрешностей как случайных величин. Методы теории вероятностен и математической статистики позволяют установить вероятностные (статистические) закономерности появления случайных погрешностей и на основании этих закономерностей дать количественные оценки результата измерения и его случайной погрешности На практике все результаты измерений и случайные погрешности являются величинами дискретными, т.е. величинами xi, возможные значения которых отделимы друг от друга и поддаются счету. При использовании дискретных случайных величин возникает задача нахождения точечных оценок параметров их функций распределения на основании выборок — ряда значений xi, принимаемых случайной величиной x в n независимых опытах. Используемая выборка должна быть репрезентативной (представительной), т.е. должна достаточно хорошо представлять пропорции генеральной совокупности. Оценка параметра называется точечной, если она выражается одним числом. Задача нахождения точечных оценок — частный случай статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выборки. В отличие от самих параметров их точечные оценки являются случайными величинами, причем их значения зависят от объема экспериментальных данных, а закон распределения — от законов распределения самих случайных величин. Точечные оценки могут быть состоятельными, несмещенными и эффективными. Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к истинному значению числовой характеристики. Несмещенной называется оценка, математическое ожидание которой равно оцениваемой числовой характеристике. Наиболее эффективной считают ту из «нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию. Требование несмещенности на практике не всегда целесообразно, так как оценка с небольшим смещением и малой дисперсией может оказаться предпочтительнее несмещенной оценки с большой дисперсией. На практике не всегда удается удовлетворить одновременно все три этих требования, однако выбору оценки должен предшествовать ее критический анализ со всех перечисленных точек зрения. Наиболее распространенным методом получения оценок является метод наибольшего правдоподобия, который приводит к асимптотически несмещенным и эффективным оценкам с приближенно нормальным распределением. Среди других методов можно назвать методы моментов и наименьших квадратов. Точечной оценкой МО результата измерений является среднее арифметическое значение измеряемой величины
При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по критерию наименьших квадратов. Точечная оценка дисперсии, определяемая по формуле
является несмещенной и состоятельной. СКО случайной величины х определяется как корень квадратный из дисперсии. Соответственно его оценка может быть найдена путем извлечения корня из оценки дисперсии. Однако эта операция является нелинейной процедурой, приводящей к смещенности получаемой таким образом оценки. Для исправления оценки СКО вводят поправочный множитель k(n), зависящий от числа наблюдений n. Он изменяется от k(3) = 1, 13 до k(∞) ≈ 1, 03. Оценка среднего квадратического отклонения
Полученные оценки МО и СКО являются случайными величинами. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки и . Рассеяние этих оценок целесообразно оценивать с помощью СКО Sx Sσ . Оценка СКО среднего арифметического значения
Оценка СКО среднего квадратического отклонения
Отсюда следует, что относительная погрешность определения СКО может быть оценена как
.
т.е. считают k(n)=1. Иногда оказывается удобнее использовать следующие формулы для расчета оценок СКО отдельных наблюдений и результата измерения:
Точечные оценки других параметров распределений используются значительно реже. Оценки коэффициента асимметрии и эксцесса находятся по формулам
Определение рассеяния оценок коэффициента асимметрии и эксцесса описывается различными формулами в зависимости от вида распределения. Краткий обзор этих формул приведен в литературе.
|