Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Относительный покой жидкости: горизонтальное перемещение жидкости с постоянным ускорением
При движении сосуда в горизонтальном направлении с постоянным ускорением (рис. 2.5) на жидкость, находящуюся в нем, действует сила тяжести и сила инерции.
Рисунок 2.5 Горизонтальное перемещение резервуара с жидкостью
В этом случае имеем: ; ; . Поверхность равного давления при этом определяется уравнением: . (2.19) После интегрирования получаем: . (2.20) или . (2.21) Поверхностями равного давления будут плоскости, углы наклона которых к горизонтальной плоскости определяются угловым коэффициентом, равным (). Закон распределения давления можно получить после интегрирования уравнения (2.6) с учетом ; ; , а также граничных условий ; ; , в следующем виде: . (2.22) Данное уравнение показывает, что при движении резервуара с жидкостью вдоль горизонтальной плоскости с постоянным ускорением распределение давления подчиняется линейному закону для любой фиксированной вертикали (, ,...). Сила давления на криволинейную поверхность (рис. 2.6) может быть найдена из условия динамического равновесия объема жидкости , заключенного между криволинейной поверхностью и плоскостью, проведенной через граничный контур поверхности (на рис. 2.6 этот объем заштрихован): , (2.23) где - сила давления на плоское сечение АВ, определяемая по формуле ; - сила инерции; - вес объема жидкости. Рисунок 2.6 - К определению силы давления на криволинейную поверхность
|