![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Парные коэффициенты корреляции. Коэффициент множественной корреляции. Расчет частных коэффициентов детерминации модели.
Парный коэффициент корреляции – основной показатель взаимозависимости двух случайных величин, служит мерой линейной статистической зависимости между двумя величинами, он соответствует своему прямому назначению, когда статистическая связь между соответствующими признаками в генеральной совокупности линейна. Данный коэффициент применяетсядля измерения тесноты связи между двумя из рассматриваемых переменных (без учета их взаимодействия с другими переменными).
С помощью парного линейного коэффициента корреляции выявляется связь между двумя признаками, один из которых можно рассматривать как результативный, другой — как факторный. Коэффициент множественной корреляции (R) характеризует тесноту связи между результативным показателем и набором факторных показателей: где σ 2 — общая дисперсия эмпирического ряда, характеризующая общую вариацию результативного показателя (у) за счет факторов; σ ост 2— остаточная дисперсия в ряду у, отражающая влияния всех факторов, кроме х; у — среднее значение результативного показателя, вычисленное по исходным наблюдениям; s — среднее значение результативного показателя, вычисленное по уравнению регрессии. Коэффициент множественной корреляции принимает только положительные значения в пределах от 0 до 1. Чем ближе значение коэффициента к 1, тем больше теснота связи. И, наоборот, чем ближе к 0, тем зависимость меньше. При значении R < 0, 3 говорят о малой зависимости между величинами. При значении 0, 3 < R < 0, 6 говорят о средней тесноте связи. При R > 0, 6 говорят о наличии существенной связи. Квадрат коэффициента множественной корреляции называется коэффициентом детерминации (D): D = R2. Коэффициент детерминации показывает, какая доля вариации результативного показателя связана с вариацией факторных показателей. В основе расчета коэффициента детерминации и коэффициента множественной корреляции лежит правило сложения дисперсий, согласно которому общая дисперсия (σ 2) равна сумме межгрупповой дисперсии (δ 2) и средней из групповых дисперсий σ i2): σ 2 = δ 2 + σ i2. Межгрупповая дисперсия характеризует колеблемость результативного показателя за счет изучаемого фактора, а средняя из групповых дисперсий отражает колеблемость результативного показателя за счет всех прочих факторов, кроме изучаемого. Математические модели корреляционного анализа в форме коэффициентов имеют ограниченные аналитические возможности. Зная лишь направление ковариации показателей и тесноту связи, невозможно определить закономерности формирования уровня результативного показателя под влиянием исследуемых факторов, оценить интенсивность их влияния, классифицировать факторы на основные и второстепенные. Для этих целей используются модели регрессионного анализа. Линейная модель (уравнение) регрессионного анализа может быть представлена в виде у = bo + b 1 x 1+ b 2 x 2 +... + bnxn, где у — результативный показатель; x 1, x 2,..., xn — факторные модели; b 0, b 1, b 2, ..., bn — коэффициенты регрессии. Частный коэффициент детерминации показывает, насколько процентов вариация результативного признака объясняется вариацией i-го признака, входящего в множественное уравнение регрессии. Он рассчитывается по формуле
Следует усвоить, что коэффициенты частной детерминации - это доли от разных величин, поэтому они несравнимы; по этим долям нельзя судить о роли факторов. Их главное практическое значение - определить, имеет ли смысл добавить в уравнение регрессии новый фактор или нет.
|