![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Топливно-сжигающие устройства трубчатых печей
Основными требованиями к топливно-сжигающим устройствам являются: обеспечение заданных режимов горения, экономичность распыливания (для жидкого топлива), полнота сжигания, малый уровень шума, технологичность изготовления, монтажа и ремонта. Конструкции таких устройств, используемых в промышленных печах, характеризуются чрезвычайным разнообразием. По виду сжигаемого топлива их классифицируют на жидкостные (мазутные), газовые и комбинированные (газомазутные). В нефтеперерабатывающей промышленности большинство трубчатых печей оборудовано комбинированными газомазутными горелками. В остальных отраслях промышленности большее распространение нашли или газовые, или жидкостные топливно-сжигающие устройства [1]. Топливно-сжигающие устройства в трубчатых печах размещают на стенах, сводах, подинах горизонтально, вертикально, наклонно и т.д. Различные варианты расположения сжигающих устройств представлены на рисунке 4.4 [5].
а – горизонтальное; б – подовое; в - сводовое Рисунок 4.4 – Расположение топливно-сжигающих устройств в печах
Топливно-сжигающие устройства жидкого топлива. Жидкое топливо (мазут) горит в печах только после его перехода в парообразное состояние, поскольку температура его воспламенения выше температуры кипения. Поэтому мазут подается на сжигание в печь в распыленном состоянии. Для распыливания топлива используется перегретый водяной пар и (или) подогретый воздух. Для нормальной работы форсунок, работающих на мазуте, его вязкость перед горелкой не должна превышать 3º ВУ (условной вязкости), а температура распыливающего пара должна быть выше температуры насыщения паров воды не менее чем на15…20 º С. При распыливании мазут рассеивается в топочной камере в виде тумана. По способу подвода энергии различают форсунки с механическим распыливанием (давление создается в мазутопроводе перед форсункой) и форсунки с воздушным или паровым распыливанием. Схемы распыления мазута форсунками показаны на рисунке 4.5 [1].
а – прямоструйная форсунка при давлении 1…2МПа; б – центробежная с тангенциальным подводом горючего; в – центробежная со специальным завихрителем; г – ротационная; д, е – с распыливающей средой (водяным паром, воздухом) высокого д и низкого е давления; А – топливо; Б – воздух; В – пар Рисунок 4.5– Схемы распыления топлива мазутными форсунками
Топливно-сжигающие устройства газового топлива. Для сжигания газового топлива чаще всего применяются два типа горелок (рисунок 4.5). – инжекционного типа, в которых газ смешивается с воздухом в смесительной камере перед входом в камеру сгорания; – горелки, в которых газ смешивается с воздухом в самой камере сгорания. а – кинетическая инжекционная среднего давления; б – с принудительной подачей воздуха и закрученным потоком газа; в – диффузионная с принудительной подачей воздуха и подачей газа мелкими струями; 1 – газовое сопло; 2 – регулирующая воздушная заслонка; 3 – смеситель; 4 – керамический насадок; 5 – лопаточный завихритель; 6 – газовый коллектор; 7 – обмуровка топки; А – воздух; Б – газ Рисунок 4.6– Схемы горелок для сжигания газа
Рисунок 4.7 – Форсунка с паровым распыливанием Рисунок 4.8 – Форсунка с воздушным распыливанием
В нефтезаводской практике наиболее распространены форсунки с паровым распыливанием (рисунок 4.7) вследствие их простоты. Однако они требуют большого расхода пара (от 0, 3 до 0, 6 кг/кг топлива). В форсунках с воздушным распыливанием (рисунок 4.8) распыливающим агентом является сжатый воздух. Они требуют меньшего расхода энергии, чем форсунки с паровым распыливанием, и благодаря хорошему смешению топлива с воздухом дают короткий факел [4]. Теплопроизводительность горелок регулируется изменением давления газа перед соплом инжектора. Высокой эффективностью и широким распространением характеризуются беспламенные панельные горелки (рисунок 4.9). Такая горелка имеет распределительную камеру 1, в переднюю часть которой вварены трубки для выхода газовоздушной смеси. На трубки надеты керамические призмы 6, каждая из которых снабжена четырьмя цилиндроконическими каналами (туннелями). Призмы образуют керамическую панель размерами 500 В таких горелках благодаря высокой температуре в зоне горения обеспечивается полное сгорание газа при малом коэффициенте избытка воздуха: в керамических каналах уже на участке длиной 65…70 мм обеспечивается полное сгорание газовоздушной смеси. Теплопередача происходит излучением от поверхности керамической плиты. Теплопроизводительность горелок регулируется изменением расхода газа в коллектор, к которому подключен ряд горелок, а коэффициент избытка воздуха – заслонкой 4 индивидуально для каждой горелки. Размеры поверхности горелки составляют 500
1 – распределительная камера (короб); 2 – инжекторный смеситель газа; 3 – сопло; 4 – регулирующая заслонка; 5 – газоподводящий патрубок; 6 – керамические призмы; 7 – теплоизоляционный слой (диатомовая крошка); 8 – болт; 9 – гайка; 10 – теплоизоляционный слой (диатомовая крошка); 11 – асбестопый шнур Рисунок 4.9 – Беспламенная панельная горелка
Газомазутные горелки ГМГ (рисунок 4.10, таблица 4.1) предназначены для сжигания мазута и газа, а при необходимости – для совместного их сжигания [5].
1 – газовоздушная часть; 2 – форсунка газомазутная; 3 – регистр первичного воздуха; 4 – регистр вторичного воздуха; 5 – плита монтажная Рисунок 4.10 – Горелка типа ГМГ
Таблица 4.1 – Основные размеры горелок ГМГ
Горелки ГМГ оборудуются для распыления мазута паромеханическими мазутными форсунками (рисунок 4.11).
1 – затяжной винт; 2 – скоба; 3 – паровой штуцер; 4 – колодка; 5 – топливный штуцер; 6 – рукоятка; 7 – ствол; 8 – распыливающая горелка Рисунок 4.11 – Форсунка паромеханическая Мазут по внутренней трубе форсунки (рисунок 4.12) подводится через распределительную шайбу в кольцевой канал топливного завихрителя и далее по тангенциальным каналам попадает в камеру завихрения, приобретая вращательно-поступательное движение, выходит из сопла и распыливается за счет центробежных сил.
1 – гайка; 2 – распределительная шайба; 3 – завихритель топливный; 4 – завихритель паровой Рисунок 4.12 – Головка распылителя
Для обеспечения расширения диапазона регулирования форсунки снабжаются еще паровыми завихрителями. Пар по наружной трубе подходит к каналам накидной гайки, далее к каналам парового завихрителя и, выходя закрученным потоком, принимает участие в распылении мазута. Распыливающие детали стягиваются накидной гайкой. Регистр вторичного воздуха представляет собой лопаточный аппарат с прямыми лопатками, установленными под углом 45˚, служащими для закрутки потока воздуха. Регистр первичного воздуха устроен подобным образом и служит для подвода закрученного воздушного потока к корню пламени. Выпускаемые горелки рассчитаны для сжигания газа с теплотворной способностью 35, 5 МДж/м3 и мазута марок 40 и 100. При необходимости сжигания газа с теплотворной способностью выше указанной, необходимо изменить давление газа либо сечение выходных отверстий для обеспечения требуемого расхода. Подогрев мазута должен обеспечить вязкость перед форсункой до 6˚ ВУ. Регулирование производительности горелки осуществляется изменением давления мазута или газа и воздуха. При установке нескольких горелок в печи для устранения отрицательного влияния смежных горелок целесообразно при компоновке предусмотреть противоположную закрутку потока воздуха у горелок, расположенных рядом. Закрутка в горелке первичного и вторичного воздуха должна быть в одну сторону. Горелка должна быть освобождена от нагрузки трубопроводов. В горелках ГМГ вторичный воздух регулируется соответственно изменению давления топлива. Для лучшего перемешивания (т.е. снижения химического недожога и расхода воздуха), особенно при работе на малых нагрузках, в горелке предусмотрена подача первичного воздуха давлением до 1, 5 кПа в количестве 15% от общего расхода воздуха. При работе на мазуте первичный воздух не регулируется, а при работе на газе первичный воздух регулируется пропорционально расходу газа.
|