Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Определение линейно - однородных производственных функций
Производственная функция может быть записана в самых различных алгебраических формах. Как правило, экономисты работают с линейно однородными производственными функциями. Производственная функция называется однородной степени n, если при умножении ресурсов на некоторое число k полученный объем производства будет в kn раз отличаться от первоначального. Условия однородности производственной функции записывается следующим образом: Q = f (kL, kK) = kn Q
Например, в день затрачивается 9 часов труда (L) и 9 часов работы машин (К). Пусть при данном сочетании факторов L и K фирма может производить в день продукции на сумму 200 тыс. рублей. В этом случае производственная функция Q = F(L, K) будет представлена следующим равенством: Q = F(9; 9) = 200 000, где F – определённого вида алгебраическая формула, в которую подставляются значения L и T. Допустим, фирма принимает решение увеличить работу капитала и применение труда в два раза, что приводит к росту объёма выпускаемой продукции до 600 тыс. рублей. Получаем, что умножение факторов производства на 2 приводит к увеличению объёма производства в 3 раза, то есть, используя условия однородности производственной функции: Q = f (kL, kK) = kn Q, получаем: Q = f (2L, 2K) = 2× 1, 5× Q, то есть, в данном случае мы имеем дело с однородной производственной функцией степени 1, 5. Показатель степени n называется степенью однородности. Если n = 1, то говорят, что функция однородна первой степени или линейно однородна. Линейно однородная производственная функция представляет интерес тем, что для нее характерна постоянная отдача, то есть, при увеличении факторов производства объём выпускаемой продукции постоянно увеличивается в одинаковой мере. Если n> 1, то производственная функция демонстрирует возрастающую отдачу, то есть, рост факторов производства ведёт к ещё большему росту объёма производства (например: увеличение факторов в два раза ведёт к увеличению объёма в 2 раза; в 3 раза – к увеличению в 6 раз; в 4 раза – к увеличению в 12 раз и т.д.) Если n< 1, то производственная функция демонстрирует убывающую отдачу, то есть, рост факторов производства ведёт к уменьшению отдачи по росту объёмов производства (например: увеличение факторов в 2 раза – ведёт к увеличению объемов в 2 раза; увеличение факторов в 3 раза – к увеличению объёмов в 1, 5 раз; увеличение факторов в 4 раза – к увеличению объёмов в 1, 2 раза и т.д.).
|