![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Електромагнітне поле⇐ ПредыдущаяСтр 46 из 46
8.1. Вихрове електричне поле Джерелами електричного поля можуть бути або електричні заряди, або змінні в часі магнітні поля. У першому випадку поле електричних зарядів описується узагальненим законом Кулона Електричні поля, які збуджуються змінними в часі магнітними полями, також є вихровими і для них циркуляція вектора напруженості Е по довільному замкненому контуру і не дорівнює нулеві, як в електростатичних полях, а дорівнює швидкості зміни магнітного потоку, який пронизує довільну поверхню, що спирається на контур інтегрування, Такі вихрові електричні поля зумовлюють неперервний рух електричних зарядів уздовж замкнених провідників, вміщених у це поле, тобто можуть спричинювати виникнення індукційних струмів, що вперше і спостерігалося в дослідах Фарадея. За уявленнями Дж. Максвела, всяке змінне в часі магнітне поле збуджує в оточуючому просторі вихрове електричне поле. Існує істотна відмінність тлумачення електромагнітної індукції М. Фарадеєм і Дж. Максвелом. Якщо М. Фарадей уявляв електромагнітну індукцію як збудження електричного струму в замкненому провіднику під дією змінного магнітного поля, то, на думку Дж. Максвела, суть явища електромагнітної індукції зводиться до виникнення вихрового електричного поля скрізь, де є змінне магнітне поле, і, отже, для прояву явища електромагнітної індукції наявність провідників є не обов'язковою. Виникнення індукційного струму в замкненому провідному контурі — це лише один із проявів виникнення вихрового електричного поля під дією змінного в часі магнітного поля. Вихрове поле напруженістю Е може спричинювати й інші дії, наприклад, поляризувати діелектрик, викликати пробій діелектрика між обкладками конденсатора, прискорювати або гальмувати заряджені частинки тощо. Вихрове електричне поле, що виникає при зміні магнітного поля, може збуджувати електричний струм у незамкненому електричному колі, наприклад у колі з повітряним плоским конденсатором. Отже, вихрове електричне поле виникає скрізь, де є змінне магнітне поле, силові лінії його є замкненими і воно здатне індукувати електричні струми. Закон електромагнітної індукції в узагальненому Дж. Максвелом вигляді записується так: 8.2. Електромагнітне поле Електромагнітне поле є формою матерії, через яку здійснюється взаємодія між електричнозарядженими частинками. Поняття поля (електричного та магнітного) ввів М. Фарадей у 1830 р. Згідно з уявленнями Дж. Максвела заряджені частинки або струми створюють в усіх точках оточуючого їх простору особливий стан — поле, яке діє на всяку іншу заряджену частинку або струм, вміщені в довільну точку цього простору. Отже, поле заряджених електричних частинок або струмів зосереджене в усіх точках простору, що їх оточує. У кожній такій точці електромагнітне поле характеризується енергією, імпульсом тощо. Електромагнітне поле може існувати і вільно, незалежно від джерел, які його створили, у вигляді електромагнітних хвиль. У 1865 р. Дж. Максвел теоретично показав, що електромагнітні коливання за своєю внутрішньою природою мають властивість поширюватись у просторі зі швидкістю світла. Цей теоретичний висновок було підтверджено у 1888 р. дослідами німецького фізика Г. Герца, що відіграло вирішальну роль в утвердженні єдиної природи електричних, магнітних і світлових явищ. Електромагнітне поле у вакуумі характеризується векторами напруженості електричного поля Електромагнітне поле в будь-якому середовищі описується в макроскопічній електродинаміці системою рівнянь Максвела, які дають можливість визначити силові характеристики поля Явища, які визначаються порівняно слабкими і повільно змінними електромагнітними полями, описуються законами класичної електродинаміки за допомогою системи рівнянь Максвела. Для сильних і швидкозмінних полів визначальними є квантові ефекти, що описуються законами квантової електродинаміки. 8.3. Струм зміщення. Система рівнянь Максвела Дамо загальну характеристику теорії Максвела. Вона розроблена способом послідовного теоретичного і математичного узагальнень основних експериментальних законів електричних і магнітних явищ: закону Кулона, узагальненого на основі теореми Гауса, закону повного струму та закону електромагнітної індукції. Теорія Максвела є феноменологічною, тобто такою, яка електричні і магнітні явища не пов'язує із структурою речовини і заряду. В ній не розкривається внутрішній механізм явищ взаємодії поля і речовини. Вплив середовища характеризується макроскопічними параметрами: діелектричною ε і магнітною μ, проникностями та питомою електропровідністю σ. Теорія Максвела розглядає поля, що створюються макроскопічними зарядами та струмами, рівномірно розподіленими в об'ємах, що є значно більшими від характерних об'ємів атомів і молекул речовини, на відстанях від джерел значно більших за атомні розміри. Зміни полів розглядаються в часових інтервалах, значно більших від характерних часових інтервалів атомних процесів (наприклад, періоду обертання електронів на орбітах навколо ядер). Теорія Максвела розглядає макрополя, які є наслідком усереднення по фізично нескінченно малих об'ємах й інтервалах часу мікрополів. Ця теорія є теорією близькодії на противагу помилковим поглядам, які сформувалися на основі емпіричних законів електрики і магнетизму, що допускали миттєве поширення у просторі електричних сигналів на будь-яку відстань без участі проміжного середовища (концепція далекодії). Концепція далекодії базувалася на ньютонівських уявленнях про характер сил всесвітнього тяжіння. Пізніше Дж. Максвел розвинув ідеї М. Фарадея, за якими електромагнітні явища є проявом фізичних процесів у проміжному середовищі, що заповнює простір між зарядженими тілами або струмами. За Дж. Максвелом, електромагнітна взаємодія передається від однієї точки простору до іншої матеріальним агентом — електромагнітним полем — зі скінченою швидкістю, яка у вакуумі дорівнює швидкості світла с = 3∙ 108 м/с. У теорії Максвела розкривається електромагнітна природа світла і, отже, електричні, магнітні та світлові явища розглядаються в єдності і зведені до однакової їхньої природи.
Принципово важливою особливістю електричних і магнітних полів є наявність тісного взаємозв'язку між ними. Ще М. Фарадей експериментальне виявив, що зміна в часі магнітного поля спричиняє виникнення вихрового електричного поля (явище електромагнітної індукції), а Дж. Максвел теоретично довів, що зміна в часі електричного поля має спричиняти виникнення вихрового магнітного поля. Теоретичний висновок Максвела пізніше, у 1888 р., було підтверджено дослідами Герца. Закон електромагнітної індукції в інтегральній формі записують так:
Зв’язок між зміною магнітного поля
Зі зміною в часі індукції (зміщення) електричного поля Зв'язок між зміною індукції електричного поля Вихрове магнітне поле, як відомо, створюється також струмами провідності (закон повного струму):
Об'єднавши формули (8.2) і (8.3), можна записати
З рівності (8.4) випливає, що в природі існує два джерела вихрового магнітного поля: струми провідності Перейдемо до диференціального запису рівняння (8.4). З цією метою застосуємо до лівої частини цього рівняння теорему Стокса і одержимо
Тоді рівність (8.4) перепишемо так:
Оскільки поверхня інтегрування в (8.6) є довільною, то від рівності інтегралів можна перейти до рівності підінтегральних виразів
Рівності (8.4) і (8.7) виражають узагальнений Дж. Максвелом закон повного струму. Зформули (8.7) видно, що вихрове магнітне поле створюється струмом провідності густиною
Доданок Система рівнянь Максвела є узагальненим математичним записом основних експериментальних законів електромагнітних явищ у довільному середовищі. Ці рівняння встановлюють співвідношення між векторами електромагнітного поля
а у диференціальній –
Перше рівняння Максвела – це узагальнення закону Біо-Савара-Лапласа і є більш загальною формою закону повного струму, який відображає той експериментальний факт, що джерелами вихрового магнітного поля можуть бути струми провідності і струми зміщення. Друге рівняння Максвела є математичним записом експериментального закону електромагнітної індукції Фарадея. Узагальнений фізичний зміст його полягає в тому, що всяка зміна в часі магнітного поля спричиняє збудження вихрового електричного поля. Третє рівняння Максвела відображає експериментальний факт відсутності в природі магнітних зарядів, тобто відсутність джерел магнітного поля, подібних до джерел електричного поля (зарядів). Четверте рівняння Максвела є узагальненням на основі теореми Гауса закону Кулона і фізично вказує на існування в природі джерел електричного поля у вигляді електричних зарядів, розподілених у просторі з об'ємною густиною ρ. Як видно, рівняння Максвела не є симетричними відносно електричного і магнітного полів. Це зумовлено наявністю в природі джерел електричного поля (електричних зарядів) і відсутністю подібних джерел магнітного поля (магнітних зарядів, монополів). Рівняння Максвела в інтегральній формі частіше використовують для розрахунків характеристик поля. Ці рівняння застосовують і тоді, коли є поверхні розриву, де характеристики поля і середовища змінюються стрибкоподібне. Разом з тим ці рівняння в диференціальній формі передбачають неперервність усіх характеристик поля і речовини в просторі й часі. Диференціальну систему рівнянь доповнюють граничними умовами
Система рівнянь Максвела разом із граничними умовами не є замкненою системою рівнянь електромагнітного поля, оскільки вони не містять ніяких констант, що характеризують властивості середовища, в якому збуджується електромагнітне поле. Ці рівняння треба доповнити так званими матеріальними рівняннями, які для випадку слабких полів, що порівняно повільно змінюються в просторі і часі для ізотропних не феромагнітних і не сегнетоелектричних середовищ, можуть бути записані у вигляді
де σ — питома провідність провідника. Константи ε, Рівняння Максвела разом з матеріальними рівняннями і граничними умовами становлять повну замкнену систему рівнянь, яка дає можливість розв'язати будь-яку задачу макроскопічної електродинаміки: відшукати вектори поля в кожній точці простору в довільний момент часу за відомим розподілом електричних зарядів і струмів у функції координат і часу або ж, навпаки, визначити розподіл зарядів і струмів за відомими значеннями векторів поля. Для стаціонарних полів
і систему рівнянь магнітостатичного поля
Статичні електричні й магнітні поля є незалежними між собою. У цьому разі джерелами електричних полів є лише електричні заряди, а джерелами магнітних — лише струми провідності. Для вакууму (
У цьому разі джерелами вихрового магнітного поля є лише змінні в часі електричні поля, а джерелами вихрового електричного поля — лише змінні в часі магнітні поля. Система рівнянь Максвела описує величезну область фізичних явищ. Ці рівняння лежать в основі розрахунків задач електро- і радіотехніки, теорії і практики магнітної гідродинаміки, нелінійної оптики, вони відіграють велику роль у розвитку фізики плазми та у вирішенні проблем термоядерного синтезу, їх застосовують при розрахунках прискорювачів елементарних частинок, в астрофізиці тощо.
Питання для самоконтролю 1. Що таке вихрове електричне поле? 2. Як ви розумієте поняття електромагнітне поле? Приклад електромагнітного поля. 3. Що таке струм зміщення? 4. Напишіть рівняння Максвела
|