Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Новый обскурантизм и Российское просвещение 3 страница






Сам Колмогоров, решив задачу об оценках сверху промежуточных производных, понимал, что он может решать теми же приёмами Гюйгенса и Гамильтона и много других задач оптимизации, но он не стал этого делать, особенно когда Понтрягин, которому он всегда старался помогать, опубликовал свой " принцип максимума", являющийся, по существу, частным случаем того же принципа Гюйгенса забытой контактной геометрии, применённого, однако, к не самой общей задаче.

Колмогоров правильно думал, что Понтрягин не понимает ни этих связей с принципом Гюйгенса, ни связи своей теории с сильно предшествовавшей ей работой Колмогорова об оценках производных. И поэтому, не желая мешать Понтрягину, он нигде не писал об этой, хорошо ему известной, связи.

Но сейчас, я думаю, об этом можно уже сказать, в надежде, что кто-либо сумеет использовать эти связи для открытия новых результатов.

Поучительно, что неравенства Колмогорова между производными послужили основой замечательных достижений Ю. Мозера в так называемой КАМ-теории (Колмогорова, Арнольда, Мозера), позволивших ему перенести результаты Колмогорова 1954 года об инвариантных торах аналитических гамильтоновых систем на всего лишь триста тридцать три раза дифференцируемые системы. Так обстояло дело в 1962 году, при изобретении Мозером его замечательной комбинации сглаживания Нэша с методом ускоренной сходимости Колмогорова.

Сейчас нужное для доказательства число производных значительно снижено (прежде всего, Дж. Мезером), так что триста тридцать три производные, нужные в двумерной задаче об отображениях кольца, снизились до трёх (в то время как при двух производных найдены контрпримеры).

Интересно, что после появления работы Мозера американские " математики" пытались опубликовать своё " обобщение теоремы Мозера на аналитические системы" (каковое обобщение было просто опубликованной десятком лет раньше теоремой Колмогорова, которую Мозеру удалось обобщить). Мозер, однако, решительно положил конец этим попыткам приписать другим классический результат Колмогорова (справедливо заметив, впрочем, что Колмогоров никогда не опубликовал подробного изложения своего доказательства).

Мне казалось тогда, что доказательство опубликовано Колмогоровым в заметке в ДАН достаточно ясно (хотя он писал скорее для Пуанкаре, чем для Гильберта), в отличие от доказательства Мозера, где я не понимал одного места. Я даже переделал его в своём обзорном изложении замечательной теории Мозера в 1963 году. Впоследствии Мозер объяснил мне, что он имел в виду в этом неясном месте, но я и сейчас не уверен, были ли эти объяснения должным образом опубликованы (при моей переделке приходится выбирать s < e/3, а не e/2, как указывалось в непонятном месте, вызвавшем затруднения не только у меня, но и у других читателей и допускающем неправильное истолкование неясно сказанного).

Поучительно ещё, что " метод ускоренной сходимости Колмогорова" (правильно приписанный Колмогоровым Ньютону) использовался с аналогичной целью решения нелинейного уравнения А.Картаном за десять лет до Колмогорова, при доказательстве того, что теперь называют теоремой А теории пучков. Колмогоров ничего об этом не знал, а Картан указал это мне в 1965 году, и убедился в том, что Колмогорову можно было бы сослаться и на Картана (хотя ситуация у того в теории пучков была несколько проще, так как при решении линеаризованной задачи не было основной в небесной механике трудности резонансов и малых знаменателей, присутствовавшей у Колмогорова и у Пуанкаре). Не математический, а более широкий подход Колмогорова к своим исследованиям ярко проявился в двух его работах с соавторами: в статье с М. А. Леонтовичем о площади окрестности броуновской траектории и в статье " КПП" (Колмогорова, Петровского и Пискунова) о скорости распространения нелинейных волн.

В обоих случаях в работе присутствует и ясная физическая постановка естественнонаучной задачи, и сложная и нетривиальная математическая техника её решения.

И в обоих же случаях Колмогоровым выполнена не математическая, а именно физическая часть работы, связанная, прежде всего, с постановкой задачи и с выводом необходимых уравнений, в то время как их исследование и доказательство соответствующих теорем принадлежат соавторам.

В случае броуновских асимптотик эта трудная математическая техника включает исследование интегралов вдоль деформируемых путей на римановых поверхностях, с учётом необходимых для этого сложных деформаций контуров интегрирования при изменении параметров, то есть то, что сегодня называется либо " теорией Пикара-Лефшеца", либо " теорией связности Гаусса-Манина".

И всё это исследование асимптотик интегралов принадлежит М. А. Леонтовичу, замечательному физику (кстати, придумавшему, вместе со своим учителем Л. И. Мандельштамом, теорию, доставившую объяснение радиоактивного распада при помощи квантового туннельного эффекта прохода под барьером, причём опубликованная ими работа была впоследствии обобщена их уехавшим в США учеником Г.Гамовым3, под именем которого она теперь больше известна).

3 Мой земляк, одессит Г. Гамов более всего знаменит следующими тремя своими открытиями: теория альфа-распада, разгадка трёхбуквенного кодирования аминокислот основаниями в ДНК и теория " большого взрыва" при образовании Вселенной. Сейчас его замечательные книги доступны и русскому читателю (который долго не имел этой возможности вследствие невозвращения Гамова с Сольвеевского конгресса).

Упомянутая выше работа о броуновской траектории опубликована в собраниях сочинений как Леонтовича, так и Колмогорова. И в обоих изданиях сказано, что физическая часть работы принадлежит математику, а математическая — физику. Это объясняет много особенностей российской математической культуры.

Такая же ситуация и в работе " КПП" о скорости распространения экологических волн. Колмогоров рассказывал мне, что ему принадлежит в ней формулировка математической задачи (придуманной им при размышлении об экологической ситуации движения фронта распространения вида или гена в присутствии миграции и диффузии).

Математические приёмы решения (столь же нетрадиционные, как и сама задача) были разработаны И.Г.Петровским (для которого эта нелинейная работа — тоже скорее исключение). Статью же писал в основном Пискунов, без которого её тоже не было бы. Хотя эта замечательная работа о " промежуточных асимптотиках", как называл её Я. Б. Зельдович, широко известна прикладникам и постоянно используется, математикам она мало известна, несмотря на содержащиеся в ней совершенно оригинальные и блестящие идеи о соревновании волн, движущихся с разными скоростями.

Я давно жду, что серьёзный математик продолжит эти исследования, но пока что видел только " прикладников", прилагающих готовые результаты и не добавляющих новых идей и методов.

Великий прикладник Пастер говорил, что никаких " прикладных наук" не бывает, а есть только обычные фундаментальные науки, где открывают новые истины, и есть их приложения, где эти истины используются.

Для настоящего продолжения работы " КПП" нужно именно продвижение в фундаментальной науке.

Марат писал, что " из всех математиков самые лучшие — Лаплас, Монж и Кузен, которые всё вычисляют по заранее приготовленным формулам". Эта фраза — признак полного непонимания революционерами математики, главное в которой — свободное мышление вне рамок каких бы то ни было заранее заготовленных схем.

Чуть позже Марата Абель писал из Парижа, где провёл около года, что " со здешними математиками говорить ни о чём нельзя, так как каждый из них хочет всех учить и не хочет ничему сам учиться. В результате, — пророчески писал он, — каждый из них разбирается только в одной узкой области и ничего не понимает вне её. Есть специалист по теории тепла [Фурье], есть — по теории упругости [Пуассон], есть по небесной механике [Лаплас], и только один Коши [Лагранж жил в Берлине] мог бы что-нибудь понять, но он интересуется только своим приоритетом" [например, в применении комплексных чисел к предложенному Ламе решению проблемы Ферма путём разложения бинома xn+yn на комплексные множители].

И Абель, и (десятком лет позже) Галуа сильно вышли за рамки " готовых схем" (разработав, в случае Абеля, топологию римановых поверхностей и выводя из неё как невозможность решения уравнений пятой степени в радикалах, так и невыразимость в виде элементарных функций " эллиптических интегралов", вроде интеграла от квадратного корня из многочлена третьей или четвёртой степени, выражающего длину дуги эллипса, и обратных им " эллиптических функций").

Поэтому Коши " потерял" рукописи обоих, Абеля и Галуа, так что сочинение Абеля о неразрешимости было опубликовано (Лиувиллем) лишь через десятки лет после того, как, по словам парижской газеты того времени, " этот бедняк вернулся в свою часть Сибири, называемую Норвегией, пешком — не имея денег на билет на корабль — по льду Атлантического океана".

Уже в XX веке знаменитый английский чудак Харди писал, будто " Абель, Риман и Пуанкаре прожили свои жизни зря, ничего не принеся человечеству".

Большая часть современной математики (да и большая часть всей применяемой физиками математики) — перепевы или развитие замечательных геометрических идей Абеля, Римана, Пуанкаре, пронизывающих всю современную математику, как единое целое, где, по словам Якоби, " одна и та же функция решает и вопрос о представлении чисел суммой квадратов, и вопрос о законе больших колебаний маятника", решая также и вопрос о длине эллипса, каковой эллипс описывает и движение планет, и кувыркание спутников, и конические сечения. А римановы, поверхности, абелевы интегралы, и дифференциальные уравнения Пуанкаре — это главные ключи к поразительному миру математики.

Колмогоров воспринимал как единое целое не только всю математику, но и всё естествознание. Вот пример его размышлений о миниатюризации компьютера, в качестве простейшей модели которого он рассмотрел граф (диаграмму, схему) из п вершин (шариков (фиксированного радиуса), соединённых каждый не более, чем с k другими (при помощи связей: " проволок" фиксированной толщины). Наибольшее число связей k каждой вершины он фиксировал, а число вершин п считал очень большим (в мозгу человека порядка 1010нейронов). Вопрос о миниатюризации состоит в том, е какой наименьший шар можно уместить без самопересечений заданный граф с такими свойствами: как растёт с числом вершин п радиус этого минимального шара?

Одно ограничение очевидно: объём шара должен расти не медленнее, чем та, так как суммарный объём вершин-шариков растёт с такой скоростью, а их нужно все уместить.

Но удастся ли уместить и весь граф в шар радиуса, пропорционального корню кубическому из n. Ведь, кроме вершин, уместиться должны и связи! И хотя их число тоже порядка та, объём может быть гораздо больше, так как при больших та могут потребоваться и длинные связи.

Дальше Колмогоров рассуждал, представляя себе граф как мозг. Очень глупый мозг (" червя") состоит из одной цепочки последовательно соединённых та вершин. Такой мозг легко уложить " змейкой" в " череп" радиусом порядка кубического корня из n.

При этом эволюция животных должна была стараться укладывать мозг экономно, уменьшая, по возможности, размер черепа. Как же обстоит дело у животных?

Известно, что мозг состоит из серого вещества (тела нейронов-вершин) и белого (связи: аксоны, дендриты). Серое вещество расположено вдоль поверхности мозга, а белое — внутри. При таком расположении по поверхности радиус черепа должен расти не как кубический, а быстрее, как квадратный корень из числа вершин (радиус гораздо больше, чем диктует объём шариков-вершин).

Так Колмогоров пришёл к математической гипотезе, что и минимальный радиус должен быть порядка квадратного корня из числа вершин (исходя из того, что расположение клеток реального мозга эволюцией приведено в минимизирующее радиус черепа состояние). В своих публикациях Колмогоров сознательно избегал писать об этих биологических соображениях и вообще о мозге, хотя никаких доводов в пользу квадратного корня, кроме биологических, у него вначале не было.

Доказать, что каждый граф из n вершин можно уместить (при ограничении k на число связей вершины) в шар радиуса порядка квадратного корня из та, удалось (хотя это и нелегко). Это уже — чистая математика строгих доказательств.

Но вопрос о том, почему граф нельзя уложить в " череп" меньшего радиуса, оказался более сложным (хотя бы из-за того, что " нельзя" не всегда: " очень глупый" мозг червя укладывается в череп радиуса порядка кубического корня из n, что гораздо меньше, чем квадратный корень).

В конце концов, Колмогорову удалось полностью разобраться и с этой проблемой. Во-первых, он доказал, что вложения в " череп" меньшего, чем квадратный корень из n радиуса не допускает большинство " мозгов" из n " нейронов": вложимые (вроде " одномерного" мозга в виде цепочки последовательно соединённых вершин) составляют ничтожное меньшинство из огромного общего числа n -вершинных графов (с ограниченным данной постоянной k числом связей каждой вершины).

Во-вторых, он установил замечательный критерий сложности, препятствующей вложимости в меньший " череп": признаком сложности оказалась универсальность. А именно, граф с та вершинами называется универсальным, если он содержит в качестве подграфов (с несколько меньшим числом вершин) все графы из этого меньшего числа вершин (с ограниченным, конечно, той же постоянной k числом связей каждой вершины).

Слова " несколько меньшее число вершин" можно здесь понимать по-разному: как an или как na, где а меньше 1. При таком правильном понимании универсальности доказываются следующие два факта: во-первых, дл некоторого с = const любой универсальный граф с n вершинами оказывается невложимым в шар радиуса меньше, чем квадратный корень из n, а во-вторых, неуниверсалъные графы составляют ничтожное меньшинство (в огромном числе всех n -вершинных графов с указанным выше ограничением k на связи).

Иными словами, хотя глупые мозги и могут быть малыми, никакой достаточно умный мозг {или компьютер) невозможно уместить в малый объём, и, вдобавок, одна лишь достаточная сложность системы с подавляющей вероятностью уже обеспечивает возможность её хорошего {" универсального") функционирования, то есть её способность заменять (" моделировать") все другие (почти столь же сложные, как она сама) системы.

Эти достижения составили одну из последних работ Андрея Николаевича (окончательные неравенства были получены им совместно с его учеником Бардзинем, в первоначальных неравенствах Колмогорова были лишние логарифмы, которые Бардзиню удалось убрать).

Отношение Колмогорова к логарифмам в асимптотиках было очень специфическим. Он объяснял студентам, что числа делятся им на следующие четыре категории:

  • малые числа: 1, 2,..., 10, 100;
  • средние числа: 1000, 1000000;
  • большие числа: 10100, 101000;
  • практически бесконечные числа: 101010.

Логарифмирование переводит число в предыдущую категорию. Поэтому логарифмы в асимптотиках вроде n3 ln nэто просто постоянные: n3 ln n при n = 10 — это практически 2п3, и рост логарифма настолько медлен, что им можно в первом приближении пренебречь, считая логарифм " ограниченным".

Конечно, всё это совершенно неверно с точки зрения формальной аксиоматической математики. Но это гораздо полезнее для практической работы, чем рафинированные " строгие рассуждения" и оценки, начинающиеся со слов " рассмотрим следующую вспомогательную функцию от восемнадцати аргументов" (после которых следует занимающая полторы страницы и неизвестно откуда взявшаяся формула).

Подход Колмогорова к логарифмам напоминал мне точку зрения Я.Б.Зельдовича на математический анализ. В своём учебнике анализа " для начинающих физиков и техников" Зельдович определял производную как отношение приращений функции и аргумента, в предположении, что последнее приращение не слишком велико.

На возражения правоверных математиков о том, что нужен предел, Зельдович отвечал, что " предел отношения" здесь непригоден, так как слишком малые (скажем, меньшие, чем 10-10 метра или секунды) приращения аргумента брать нельзя, просто потому, что в таком масштабе свойства пространства и времени становятся квантовыми, так что их описание при помощи математического одномерного континуума R становится превышением точности модели.

" Математические производные" Зельдович воспринимал как удобные приближённые асимптотические формулы для вычисления действительно интересующего нас отношения конечных приращений, задающегося более сложной формулой, чем производные математиков.

Что касается " строгости" математиков, то Колмогоров никогда не переоценивал её значение (хотя и пытался ввести в школьный курс геометрии многостраничное определение понятия угла, чтобы, по его словам, придать строгий смысл " углу в 721 градус").

Его лекции студентам и школьникам трудно было понимать не только из-за того, что ни одна фраза не заканчивалась, а половина не имела либо подлежащего, либо сказуемого. Ещё хуже то, что (как Андрей Николаевич мне объяснил, когда я начинал читать лекции студентам), по его глубокому убеждению, " студентам совершенно всё равно, что им говорят на лекциях: они только выучивают к экзамену наизусть ответы на несколько наиболее часто встречающихся экзаменационных вопросов, совершенно ничего не понимая".

Эти слова свидетельствуют о вполне правильном понимании Колмогоровым ситуации: с его лекциями происходило, для большинства студентов, именно то, что он описал. Зато те, кто хотел понять суть дела, мог при желании узнать из них гораздо больше, чем из стандартных дедукций вроде " х больше у, поэтому у меньше, чем х". Именно основные идеи и тайные пружины, скрываемые за " вспомогательными функциями от восемнадцати переменных", старался он сделать понятными, а вывод формальных следствий из этих основных идей он охотно оставлял слушателям. Особо затрудняло то, что Колмогоров во время своих лекций думал, и это было заметно слушателям.

Меня всегда поражало в Андрее Николаевиче благородное его желание видеть в каждом собеседнике по меньшей мере равный себе интеллект (из-за чего его и было так трудно понимать). При этом он прекрасно знал, что в действительности уровень большинства собеседников совсем другой. Андрей Николаевич назвал мне как-то только двух математиков, при разговоре с которыми он " ощущал присутствие высшего разума" (одним из них он назвал своего ученика И. М. Гельфанда).

На юбилее Андрея Николаевича Гельфанд сказал с трибуны, что он не только многому научился у учителя, но и бывал у него в Комаровке, деревне на берегу Клязьмы, вблизи Болшева, где Колмогоров жил большую часть времени (приезжая в Москву лишь на один-два дня в неделю).

Присутствовавший при этой речи Гельфанда Павел Сергеевич Александров, купивший вместе с Колмогоровым Комаровский дом (у семейства Алексеевых, то есть Станиславских) в конце 20-х годов, охотно подтвердил: " Да, Израиль Моисеевич действительно бывал в Комаровке, и был даже очень полезен, так как спас от сожжения в печке кошку".

Один из слушателей рассказал мне, что Гельфанд, уже сидящий в юбилейном зале, комментировал эти слова своему соседу так: " Эта кошка мяукала там в печи уже с полчаса, и я давно ее слышал, но истолковывал это мяуканье неправильно, не зная о кошке и приписыва звуки другому источнику".

Дикция Андрея Николаевича, действительно, была нелёгкой для восприятия; я, однако, чаще догадывался, что он хотел сказать, чем разбирал произнесённые им полуслова, так что мне эта дикция не мешала.

Всё же школьники в организованной Андреем Николаевичем в Москве в 1963 году математической школе-интернате N18 многому у него научились. Конечно, это были не рядовые школьники, а собранные со всей России и прошедшие летнюю школу в Красновидове на Можайском море победители математических олимпиад, и занимался с ними не только сам Андрей Николаевич, но и многие прекрасные преподаватели, например, математик Владимир Михайлович Алексеев, один из лучших школьных учителей Москвы Александр Абрамович Шершевский и так далее.

Особые усилия были приложены к тому, чтобы хорошо кормить и интересно преподавать не только математику, но и физику, литературу, историю, английский язык: интернат Андрей Николаевич воспринимал во многом как свою семью. Из первых выпускников большинство поступило в лучшие математические и физические вузы (с более успешным поступлением в Московский Физико-Технический Институт, чем на физический факультет Московского Университета, знаменитый, как говорил Колмогоров, " своим недоброжелательством" на экзаменах).

Сейчас многие из этих выпускников стали уже профессорами, заведующими кафедрами, директорами институтов; я не сомневаюсь в том, что кое-кто из них достоин выбора в Российскую Академию Наук и наград типа Филдсовской или Абелевской медалей.

Теорема Нехорошева, далеко обогнавшего Литтлвуда, давно стала классическим результатом в небесной механике и теории гамильтоновой эволюции динамических систем. Переехавший затем в Ленинград Ю. Матиясевич тоже начинал вместе с первыми московскими интернатцами-математиками в организованной Колмогоровым в Красновидове на Можайском море летней школе. А. Абрамов длительное время возглавлял институт, занимавшийся усовершенствованием математического образования школьников (но его борьба против попыток Министерства образования разрушить прекрасно работающую систему сделала его нежелательным для " реформаторов", обскурантистские идеи которых я описал выше, в начале этой статьи).

Один из слушателей первого выпуска интерната, В.Б.Алексеев, издал в 1976 году свои записи моих лекций в интернате 1963 года: " Теорема Абеля в задачах". В этих лекциях рассказал топологическое доказательство теоремы Абеля о неразрешимости в радикалах (комбинациях корней) алгебраических уравнений пятой степени {и более высоких степеней). В школе учат случай степени 2, но уравнения степеней 3 и 4 в радикалах тоже решаются.

Целью этих лекций было рассказать важный (и трудный) математический результат, связывающий много областей современных физики и математики, совершенно неподготовленным (но неглупым) школьникам в виде длинной серии понятных и доступных им задач, с которыми они бы сами справлялись, но которые привели бы их, в конце семестра, к теореме Абеля.

Для этого школьники быстро знакомились с геометрической теорией комплексных чисел, включая формулы Муавра (которые нынешние " реформаторы" пытаются из новых программ исключить), переходя затем к римановым поверхностям и к топологии, включая фундаментальную группу кривых на поверхности и группы монодромий (многозначностей) накрытий и разветвлённых накрытий.

Эти геометрические важнейшие понятия (которые можно было бы сравнить с атомарной теорией строения вещества в физике и химии или с клеточным строением растений и животных в биологии по их фундаментальности) приводят затем к алгебраическим столь же важным объектам: группам преобразований, их подгруппам, нормальным делителям, точным последовательностям.

В частности, появляются симметрии и орнаментов, и кристаллов, и правильных многогранников: тетраэдра, куба, октаэдра, икосаэдра и додекаэдра, включая использованные Кеплером (для описания радиусов планетных орбит) конструкции вложений их друг в друга (восемь вершин куба можно разбитьнадве четвёрки вершин двух " вписанных" в куб тетраэдров, а в додекаэдр можно " вписать" пять кубов, вершины каждогоизкоторых составляют часть вершин додекаэдра (у которого их двадцать), причём рёбра куба оказываются диагоналями пятиугольных граней додекаэдра, по одной на каждой из двенадцати граней). " Додека" — это как раз " двенадцать" по-гречески, а у куба двенадцать рёбер.

Эта замечательная геометрическая конструкция Кеплера связывает группу симметрии додекаэдра с группой всех ста двадцати перестановок пяти объектов (а именно, кубов). Она устанавливает, в алгебраических терминах, также и неразрешимость обеих этих групп (то есть их несводимость к коммутативным группам, каковая сводимость имеет место, например, для групп симметрии тетраэдра, куба и октаэдра и для групп перестановок трёх или четырёх объектов, вроде четырёх больших диагоналей куба и трёх диагоналей октаэдра). Коммутативные группы (где произведение — выполнение подряд — преобразований не зависит от их порядка) называются в алгебре абелевыми ввиду важности для его теории некоммутативности перестановок кубов.

А из неразрешимости группы монодромии уравнения пятой степени топологически выводится несуществование формулы, выражающей его корни через радикалы. Дело в том, что группа монодромии, измеряющая многозначность каждого радикала, коммутативна, а группа монодромии комбинации радикалов составляется из их групп монодромии так же, как разрешимая группа составляется из коммутативных. Так что все эти топологические соображения теории римановых поверхностей приводят к доказательству алгебраической теоремы Абеля (заложившей основы теории Галуа, названной так по имени молодого французского математика, перенесшего теорию Абеля из комплексной геометрии в теорию чисел и погибшего, не опубликовав ещё своей теории, на дуэли).

Глубокое единство всей математики очень ярко проявляется в этом примере взаимодействия топологии, логики, алгебры, анализа и теории чисел, создавшего новый плодотворный метод, при помощи которого позже была далеко развита физика теории квантов и теории относительности, а в математике была доказана также неразрешимость многих других задач анализа: например, задачи интегрирования с помощью элементарных функций и задачи явного решения дифференциальных уравнений при помощи операции интегрирования.

Тот факт, что все эти вопросы вляются топологическими, — совершенно поразительное математическое достижение, которое, по моему мнению, можно было бы сравнить с открытиями связи между электричеством и магнетизмом в физике или между графитом и алмазом в химии.

Быть может, наиболее известным результатом о невозможности в математике явилось открытие геометрии Лобачевского, центральный результат которой — невозможность вывести " аксиому параллельных" из остальных аксиом геометрии Евклида, её недоказуемость.

Поучительно, что Лобачевский этого результата о недоказуемости отнюдь не установил, а только провозгласил его как свою гипотезу, подтверждённую многостраничными (неудачными) попытками доказать аксиому параллельных, то есть придти к противоречию, исходя из противоположного аксиоме параллельных утверждения: " Через точку вне прямой проходит несколько {много) прямых, не пересекающихся с ней".

Доказательство того, что в возникающей из этой аксиомы Лобачевского геометрии противоречий не больше, чем в евклидовой (постулирующей единственность параллельной прямой), было найдено лишь после Лобачевского (по-видимому, независимо друг от друга несколькими авторами, включая Бельтрами, Больяи, Клейна и Пуанкаре или даже ещё Гаусса, высоко оценившего идеи Лобачевского).

Это доказательство непротиворечивости геометрии Лобачевского не просто; оно проводится при помощи предъявления модели геометрии Лобачевского, в которой выполняются именно его аксиомы. Одна из таких моделей (" модель Клейна") изображает плоскость Лобачевского как внутренность круга, а прямые Лобачевского — как его хорды. Провести через точку круга много хорд, не пересекающихся с какой-либо данной хордой, не проходящей через эту точку, нетрудно. Проверка остальных аксиом геометрии в этой модели тоже не очень трудна, но трудоёмка, так как этих аксиом много. Например, " любые две точки внутри круга можно соединить прямой Лобачевского (хордой), и притом только одной" и так далее. Всё это явно проделано в учебниках и занимает много (скучных) страниц.

Продолжение модели Клейна плоскости Лобачевского за пределы круга, изобразившего в этой модели плоскость Лобачевского, доставляет релятивистский мир де Ситтера, но этот факт, к сожалению, мало кто понимает (как среди математиков, так и среди релятивистов).

Современные " реформаторы" курса школьной математики объявили о своём желании ввести туда геометрию Лобачевского (на что Колмогоров не решался). Но они не упоминают даже об её основном результате (скорее всего, не подозревая о нём) и не планируют доказывать тезис Лобачевского (без чего всё это предприятие становится просто рекламным трюком, патриотического, впрочем, оттенка).

В отличие от этих " реформаторов", Колмогоров пытался учить детей математике по-настоящему. По его мнению, для этого лучше всего подходит решение задач, например, олимпиадных, и он не раз организовывал математические олимпиады школьников, особенно настаивая на том, что это предприятие должно быть не только московским, но и охватывающим все города и даже деревни страны (сегодня олимпиады распространились и на весь мир, и успехи наших школьников на них — неоспоримое свидетельство всё ещё высокого уровня школ).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.014 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал