Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формула Бернулли
Если производится несколько испытаний, причём вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А. В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну и ту же вероятность. Ниже воспользуемся понятием сложного события, понимая под ним совмещение нескольких отдельных событий, которые называют простыми. Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события А в каждом испытании одна и та же, а именно равна р. Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна Поставим перед собой задачу вычислить вероятность того, что при n испытаниях событие А осуществится ровно k раз и, следовательно, не осуществится n-k раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности. Например, если речь идет о появлении события А три раза в четырех испытаниях, то возможны следующие сложные события: Искомую вероятность обозначим Поставленную задачу можно решить с помощью так называемой формулы Бернулли. Вывод формулы Бернулли. Вероятность одного сложного события, состоящего в том, что в n испытаниях событие А наступит k раз и не наступит n-k раз, по теореме умножения вероятностей независимых событий равна
или
Полученную формулу называют формулой Бернулли. Пример. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р=0, 75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы. Решение. Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна b равна р = 0, 75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна Искомая вероятность по формуле Бернулли равна
|