Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Локальная теорема Лапласа
Выше была выведена формула Бернулли, позволяющая вычислить вероятность того, что событие появится в n испытаниях ровно k раз. При выводе мы предполагали, что вероятность появления события в каждом испытании постоянна. Легко видеть, что пользоваться формулой Бернулли при больших значениях n достаточно трудно, так как формула требует выполнения действий громадными числами. Например, если n = 50, k = 30, p = 0, 1, то для отыскания вероятности надо вычислить выражение , где , , . Правда, можно несколько упростить вычисления, пользуясь специальными таблицами логарифмов факториалов. Однако и этот путь остается громоздким и к тому же имеет существенный недостаток: таблицы содержат приближенные значения логарифмов, поэтому в процессе вычислений накапливаются погрешности; в итоге окончательный результат может значительно отличаться от истинного. Естественно возникает вопрос: нельзя ли вычислить интересующую нас вероятность, не прибегая к формуле Бернулли? Оказывается, можно. Локальная теорема Лапласа и дает асимптотическую[2] формулу, которая позволяет приближенно найти вероятность появления события ровно k раз в n испытаниях, если число испытаний достаточно велико. Заметим, что для частного случая, а именно для р=1/2, асимптотическая формула была найдена в 1730 г. Муавром; в 1783 г. Лаплас обобщил формулу Муавра произвольного р, отличного от 0 и 1. Поэтому теорему, о которой здесь идет речь, иногда называют теоремой Муавра–Лапласа. Доказательство локальной теоремы Лапласа довольно сложно, поэтому мы приведем лишь формулировку теоремы и примеры, иллюстрирующие ее использование. Локальная теорема Лапласа. Если вероятность р появления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность того, что событие А появится в n испытаниях ровно k раз, приближенно равна (тем точнее, чем больше n) значению функции при . Имеются таблицы, в которых помещены значения функции , соответствующие положительным значениям аргумента х (см. приложение 1). Для отрицательных значений аргумента пользуются теми же таблицами, так как функция четна, т. е. . Итак, вероятность того, что событие А появится в n независимых испытаниях ровно k раз, приближенно равна , где . Пример 1. Найти вероятность того, что событие А наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0, 2. Решение. По условию, n = 400; k = 80; р=: 0, 2; q = 0, 8. Воспользуемся асимптотической формулой Лапласа: . Вычислим определяемое данными задачи значение х: . По таблице приложения 1 находим = 0, 3989. Искомая вероятность . Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости опущены): . Пример 2. Вероятность поражения мишени стрелком при одном выстреле р = 0, 75. Найти вероятность того, что при 10 выстрелах стрелок поразит мишень 8 раз. Решение. По условию, n=10; k = 8; р = 0, 75; q = 0, 25. Воспользуемся асимптотической формулой Лапласа: . Вычислим определяемое данными задачи значение x: . Пo таблице приложения 1 находим . Искомая вероятность . Формула Бернулли приводит к иному результату, а именно . Столь значительное расхождение ответов объясняется тем, что в настоящем примере n имеет малое значение (формула Лапласа дает достаточно хорошие приближения лишь при достаточно больших значениях n).
|